【題目】某商場(chǎng)預(yù)計(jì)全年分批購(gòu)入每臺(tái)價(jià)值為2000元的電視機(jī)共3600臺(tái).每批都購(gòu)入臺(tái),且每批均需付運(yùn)費(fèi)400元.貯存購(gòu)入所有的電視機(jī)全年所付保管費(fèi)與每批購(gòu)入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比,比例系數(shù)為,若每批購(gòu)入400臺(tái),則全年需用去運(yùn)輸和保管總費(fèi)用43600元.

(1)求的值;

(2)現(xiàn)在全年只有24000元資金用于支付這筆費(fèi)用,請(qǐng)問(wèn)能否恰當(dāng)安排每批進(jìn)貨的數(shù)量使資金夠用?寫(xiě)出你的結(jié)論,并說(shuō)明理由.

【答案】1;(2)只需每批購(gòu)入臺(tái),可以使資金夠用

【解析】

根據(jù)若每批購(gòu)入臺(tái),則全年需用去運(yùn)費(fèi)和保管費(fèi)共元,求出比例;再求出運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用關(guān)于每批購(gòu)入臺(tái)數(shù)的函數(shù)解析式,然后利用基本不等式進(jìn)行解答.

(1)設(shè)全年需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用為

題中的比例系數(shù)設(shè)為,每批購(gòu)入臺(tái),則共需分批,每批費(fèi)用

由題意知:

當(dāng)時(shí),

解得:

(2)由(1)可得:(元)

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立

故只需每批購(gòu)入臺(tái),可以使資金夠用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中錯(cuò)誤的是( 。
A.設(shè)命題p:?x∈R,使+x+2<0,則¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,則“x=y”是“xy≤取到等號(hào)”的充要條件
C.已知命題p和q,若p∧q為假命題,則命題p與q都為假命題
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F為拋物線(xiàn)的焦點(diǎn),A、B是拋物線(xiàn)C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).

(I)若直線(xiàn)AB經(jīng)過(guò)焦點(diǎn)F,且斜率為2,求線(xiàn)段AB的長(zhǎng)度|AB|;

(II)當(dāng)OAOB時(shí),求證:直線(xiàn)AB經(jīng)過(guò)定點(diǎn)M(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx=|x-a|+x,其中a0

1)當(dāng)a=3時(shí),求不等式fx)≥x+4的解集;

2)若不等式fx)≥x+2a2x[1,3]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若命題“,”為真命題,求實(shí)數(shù)的取值范圍;

(3)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某公路 一側(cè)有一塊空地 ,其中 , .當(dāng)?shù)卣當(dāng)M在中間開(kāi)挖一個(gè)人工湖△OMN,其中M,N都在邊AB上(MN不與A,B重合,MA,N之間),且MON=30°.

(1)若M在距離A點(diǎn)2 km處,求點(diǎn)M,N之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系的坐標(biāo)平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉區(qū)域,將區(qū)域沿軸的正方向上移4個(gè)單位,得到幾何體如圖一.現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為( )

A. B. C. 2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+2|﹣|x﹣1|
(I)畫(huà)出函數(shù)y=f(x)的圖象;
(II)若關(guān)于x的不等式f(x)+4≥|1﹣2m|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案