2.已知函數(shù)f(x)=xsinx+cosx.
(1)當(dāng)$x∈(\frac{π}{4},π)$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在$x∈(\frac{π}{4},\frac{π}{2})$,使得f(x)>kx2+cosx成立,求實(shí)數(shù)k的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論x的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)分離參數(shù),問題轉(zhuǎn)化為$k<\frac{sinx}{x}$.令$h(x)=\frac{sinx}{x}$,則$h'(x)=\frac{xcosx-sinx}{x^2}$,根據(jù)函數(shù)的單調(diào)性求出h(x)的最大值,從而求出k的范圍即可.

解答 解:( 1)f'(x)=sinx+xcosx-sinx=xcosx,…(2分)
∴$x∈({\frac{π}{4},\frac{π}{2}})$時(shí),f'(x)=xcosx>0,
∴函數(shù)f(x)在$({\frac{π}{4},\frac{π}{2}})$上是增函數(shù);
$x∈({\frac{π}{2},π})$時(shí),f'(x)=xcosx<0,
∴函數(shù)f(x)在$({\frac{π}{2},π})$上是減函數(shù);  …(5分)
( 2)由題意等價(jià)于xsinx+cosx>kx2+cosx,整理得$k<\frac{sinx}{x}$.
令$h(x)=\frac{sinx}{x}$,則$h'(x)=\frac{xcosx-sinx}{x^2}$,
令g(x)=xcosx-sinx,g'(x)=-xsinx<0,
∴g(x)在$x∈(\frac{π}{4}\;,\;\;\frac{π}{2})$上單調(diào)遞減,
∴$g(x)<g(\frac{π}{4})=\frac{{\sqrt{2}}}{2}×(\frac{π}{4}-1)<0$,即g(x)=xcosx-sinx<0,…(10分)
∴$h'(x)=\frac{xcosx-sinx}{x^2}<0$,即$h(x)=\frac{sinx}{x}$在$(\frac{π}{4}\;,\;\;\frac{π}{2})$上單調(diào)遞減,
∴$h(x)<\frac{{sin\frac{π}{4}}}{{\frac{π}{4}}}=\frac{{\frac{{\sqrt{2}}}{2}}}{{\frac{π}{4}}}=\frac{{2\sqrt{2}}}{π}$,即$k<\frac{{2\sqrt{2}}}{π}$.           …(12分)

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在校運(yùn)會(huì)800米預(yù)賽中,甲、乙兩名選手被隨機(jī)地分配到A、B兩個(gè)小組之一,則他們被分到同一小組的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.小明計(jì)劃在8月11日至8月20日期間游覽某主題公園.根據(jù)旅游局統(tǒng)計(jì)數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時(shí)容量之比,40%以下為舒適,40%-60%為一般,60%以上為擁擠)情況如圖所示.小明隨機(jī)選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽2天.

(Ⅰ)求小明連續(xù)兩天都遇上擁擠的概率;
(Ⅱ)設(shè)X是小明游覽期間遇上舒適的天數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1和側(cè)面CDD1C1都是矩形,BC∥AD,△ABD是邊長(zhǎng)為2的正三角形,E,F(xiàn)分別為AD,A1D1的中點(diǎn).
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$y=\frac{{|{{x^2}+x-2}|}}{x-1}$與函數(shù)y=kx-2的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是(-1,1)∪(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,第二象限的點(diǎn)P(x0,y0)滿足bx0+ay0=0,若線段PF2的垂直平分線恰為雙曲線C的過一、三象限的漸近線,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域的面積是( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={0,1},B={x|x2+x-2=0},則A∪B=( 。
A.B.{1}C.{-2,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題“?x0∈R,x02+(a-1)x0+1<0”是真命題,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案