20.已知函數(shù)f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函數(shù)f(x)在$({\frac{π}{2},π})$上單調遞減,則實數(shù)ω的取值范圍是( 。
A.$[{\frac{1}{4},\frac{5}{8}}]$B.$[{\frac{1}{2},\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{1}{4}}]$

分析 化函數(shù)f(x)為正弦型函數(shù),由f(x)在$({\frac{π}{2},π})$上單調遞減,利用正弦函數(shù)的單調性列出不等式組,求出ω的取值范圍.

解答 解:函數(shù)f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$
=$\frac{\sqrt{2}}{2}$sin2ωx+$\frac{\sqrt{2}}{2}$(1+cos2ωx)-$\frac{\sqrt{2}}{2}$
=$\frac{\sqrt{2}}{2}$sin2ωx+$\frac{\sqrt{2}}{2}$cos2ωx
=sin(2ωx+$\frac{π}{4}$),
由函數(shù)f(x)在$({\frac{π}{2},π})$上單調遞減,
且2ωx+$\frac{π}{4}$∈(ωπ+$\frac{π}{4}$,2ωπ+$\frac{π}{4}$),
得$\left\{\begin{array}{l}{ωπ+\frac{π}{4}≥\frac{π}{2}}\\{2ωπ+\frac{π}{4}≤\frac{3π}{2}}\end{array}\right.$,
解得$\frac{1}{4}$≤ω≤$\frac{5}{8}$,
∴實數(shù)ω的取值范圍是[$\frac{1}{4}$,$\frac{5}{8}$].
故選:A.

點評 本題考查了三角函數(shù)的圖象與性質以及三角恒等變換應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若$f(x)=\left\{\begin{array}{l}{({\frac{1}{3}})^x},x≤0\\{log_3}x,x>0\end{array}\right.$,則$f({f({\frac{1}{9}})})$=(  )
A.-2B.-3C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=2,求b的最大值;
(3)設函數(shù)g(x)=f′(x)-a(x-x1),x∈(x1,x2),當x2=a時,求證:|g(x)≤$\frac{1}{12}$a(3a+2)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.根據(jù)如下的樣本數(shù)據(jù):
廣告費x/萬元4235
銷售額y/萬元49263954
得到的回歸方程為y=bx+a,其中b為9.4,據(jù)此模型預報廣告費為6萬元時的銷售額為(  )
A.63.6萬元B.65.5萬元C.67.7萬元D.72.0萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{a^2}{x^2}+ax+b$,當x=-1時函數(shù)f(x)的極值為$-\frac{7}{12}$,則f(1)=$\frac{25}{12}$或$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑為20mm,中間有邊長為5mm的正方形小孔,隨機向銅錢上滴一滴油(油滴大小忽略不計),則油恰好落入孔中的概率是(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f'(x)是函數(shù)y=f(x)的導數(shù),f''(x)是f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學經過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,請根據(jù)這一發(fā)現(xiàn),
(1)求三次函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的對稱中心;
(2)計算$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{2016}{2017}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求證:f(x)在(0,+∞)上為增函數(shù);
(2)若不等式f(x)≥0的解集為[1,+∞),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,(x>0)}\\{{3^x},(x≤0)}\end{array}}$若f(a)=$\frac{1}{3}$,則實數(shù)a的值為-1或$\root{3}{3}$.

查看答案和解析>>

同步練習冊答案