7.已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在整數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)設(shè)P(x,y)(x>0)是曲線C上任意一點(diǎn),列出方程求解即可.
(2)設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線l與曲線C的交點(diǎn)為A(x1,y1),B(x2,y2).設(shè)l的方程為x=λy+m,聯(lián)立$\left\{{\begin{array}{l}{x=λy+m}\\{{y^2}=4x}\end{array}}\right.$利用韋達(dá)定理,結(jié)合向量的數(shù)量積推出m2-6m+1<4λ2,對(duì)任意實(shí)數(shù)λ,4λ2的最小值為0,轉(zhuǎn)化求解即可得到m的取值范圍.

解答 解:(1)設(shè)P(x,y)(x>0)是曲線C上任意一點(diǎn),
那么點(diǎn)P(x,y)滿足:$\sqrt{{{(x-1)}^2}+{y^2}}-x=1(x>0)$,
化簡(jiǎn)得y2=4x(x>0).
(2)設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線l與曲線C的交點(diǎn)為A(x1,y1),B(x2,y2).
設(shè)l的方程為x=λy+m,由$\left\{{\begin{array}{l}{x=λy+m}\\{{y^2}=4x}\end{array}}\right.$得y2-4λy-4m=0,△=16(λ2+m)>0,
于是$\left\{{\begin{array}{l}{{y_1}+{y_2}=4λ}\\{{y_1}{y_2}=-4m}\end{array}}\right.$①,又$\overrightarrow{FA}=({x_1}-1,{y_1}),\overrightarrow{FB}=({x_2}-1,{y_2})$,$\overrightarrow{FA}•\overrightarrow{FB}<0?({x_1}-1)({x_2}-1)+{y_1}{y_2}={x_1}{x_2}-({x_1}+{x_2})+1+{y_1}{y_2}<0$②,
又$x=\frac{y^2}{4}$,于是不等式②等價(jià)于$\frac{y_1^2}{4}•\frac{y_2^2}{4}+{y_1}{y_2}-(\frac{y_1^2}{4}+\frac{y_2^2}{4})+1<0?\frac{{{{({y_1}{y_2})}^2}}}{16}+{y_1}{y_2}-\frac{1}{4}[{({y_1}+{y_2})^2}-2{y_1}{y_2}]+1<0$③,
由①式,不等式③等價(jià)于m2-6m+1<4λ2④對(duì)任意實(shí)數(shù)λ,4λ2的最小值為0,
所以不等式④對(duì)于一切π成立等價(jià)于m2-6m+1<0,即$3-2\sqrt{2}<m<3+2\sqrt{2}$.
由此可知,存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,
都有|FA|2+|FB|2<|AB|2,且m的取值范圍為$(3-2\sqrt{2},3+2\sqrt{2})$.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知焦點(diǎn)坐標(biāo)為(0,-4)、(0,4),且過(guò)點(diǎn)(0,-6)的橢圓方程為( 。
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)$f(x)=\sqrt{x-2}$,則函數(shù)y=f(2x)的定義域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知命題p:x2+2x-3>0;命題q:x>a,且¬p是¬q的一個(gè)充分不必要條件,則a的取值范圍是( 。
A.(-∞,1]B.[1,+∞)C.[-1,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(3+4i)(cosθ+isinθ),若$z∈R,θ≠kπ+\frac{π}{2}$,則tanθ的值為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某科研所對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),該產(chǎn)品按事先擬定的價(jià)格試銷得統(tǒng)計(jì)數(shù)據(jù).
單價(jià)x(萬(wàn)元)88.28.48.88.69
銷量y(件)908483758068
(1)①求線性回歸方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$;②談?wù)勆唐范▋r(jià)對(duì)市場(chǎng)的影響;
(2)估計(jì)在以后的銷售中,銷量與單價(jià)服從回歸直線,若該產(chǎn)品的成本為4.5元/件,為使科研所獲利最大,該產(chǎn)品定價(jià)應(yīng)為多少?
(附:$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$=8.5,$\overline{y}$=80)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在同一平面內(nèi),下列說(shuō)法:
①若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)A,B的距離之和是定值,則點(diǎn)P的軌跡是橢圓;
②若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)A,B的距離之差的絕對(duì)值是定值,則點(diǎn)P的軌跡是雙曲線;
③若動(dòng)點(diǎn)P到定點(diǎn)A的距離等于P到定直線的距離,則點(diǎn)P的軌跡是拋物線;
④若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)A,B的距離之比是定值,則點(diǎn)P的軌跡是圓.
其中錯(cuò)誤的說(shuō)法個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示程序,若P=0.9,則輸出n值的二進(jìn)制表示為( 。
A.11(2)B.100(2)C.101(2)D.110(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,|$\overrightarrow{AC}$|=1,|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案