分析 (1)求導(dǎo),由題意可得f'(1)=1,代入即可求得a的值;
(2)由題意可知:4lnx≤m(3x-$\frac{1}{x}$-2)恒成立,構(gòu)造輔助函數(shù),求導(dǎo),分類討論即可求出m的取值范圍
解答 解:(1)f′(x)=$\frac{(\frac{4x+a}{x}+4lnx)(3x+1)-3(4x+a)lnx}{(3x+1)^{2}}$
由題設(shè)f′(1)=1,
∴$\frac{4+a}{4}=1$,
∴a=0.
(2)$f(x)=\frac{4xlnx}{3x+1}$,?x∈[1,+∞),f(x)≤m(x-1),即4lnx≤m(3x-$\frac{1}{x}$-2)
設(shè)g(x)=4lnx-m(3x-$\frac{1}{x}$-2),即?x∈[1,|+∞),g(x)≤0,
∴g′(x)=$\frac{4}{x}$-m(3+$\frac{1}{{x}^{2}}$)=$\frac{-3m{x}^{2}+4x-m}{{x}^{2}}$,g′(1)=4-4m
①若m≤0,g′(x)>0,g(x)≥g(1)=0,這與題設(shè)g(x)≤0矛盾
②若m∈(0,1),當(dāng)x∈(1,$\frac{2+\sqrt{4-3{m}^{2}}}{3m}$),g′(x)>0,g(x)單調(diào)遞增,g(x)≥g(1)=0,與題設(shè)矛盾.
③若m≥1,當(dāng)x∈(1,+∞),),g′(x)≤0,g(x)單調(diào)遞減,g(x)≤g(1)=0,即不等式成立
綜上所述,m≥1.
點(diǎn)評 本題考查導(dǎo)數(shù)的綜合應(yīng)用,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和最值的關(guān)系,考查計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∨q | B. | (¬p)∧(¬q) | C. | p∨(¬q) | D. | p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8π | B. | 12π | C. | 4π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
物理及格 | 物理不及格 | 合計 | |
數(shù)學(xué)及格 | 28 | 8 | 36 |
數(shù)學(xué)不及格 | 16 | 20 | 36 |
合計 | 44 | 28 | 72 |
P(X2≥k) | 0.150 | 0.100 | 0.050 | 0.010 |
k | 2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{e}f(2)<f(1)$ | B. | $\frac{2}{e}f(2)>f(1)$ | C. | f(1)>0 | D. | f(-1)>0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com