【題目】已知函數(shù),.

(1)若曲線處的切線方程為,求的值;

(2)在(1)的條件下,求函數(shù)零點的個數(shù);

(3)若不等式對任意都成立,求a的取值范圍.

【答案】(1)0;(2)兩個;(3).

【解析】

(1)對函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程可以求出的值,最后計算即可;

(2)(1)求出函數(shù)的單調(diào)性,根據(jù)零點存在原理,可以判斷出函數(shù)零點的個數(shù);

(3)設(shè),對它進行求導(dǎo),根據(jù)的不同取值,分類討論判斷出函數(shù)的單調(diào)調(diào)性,根據(jù)函數(shù)的最值情況求出a的取值范圍.

(1),

由題意,,,解得,,,所以.

(2)由(1)知,,

,得,

且當(dāng)時,;當(dāng)時,

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

因為,,,函數(shù)在區(qū)間上的圖象是一條不間斷的曲線,由零點存在性定理,

所以函數(shù)有兩個零點.

(3)設(shè),即,

,

當(dāng)時,,所以函數(shù)單調(diào)遞減,

所以最小值為,不合題意;

當(dāng)時,,

,得.

,即時,函數(shù)單調(diào)遞減;

所以最小值為,只需,即

所以符合;

,即時,函數(shù)上單調(diào)減,在上單調(diào)增,

所以的最小值為

所以符合.

綜上,a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,點P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.

(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;

(2)Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|4,求MAB面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若點的圖像上運動,則點的圖象上運動

1)求的最小值,及相應(yīng)的

2)求函數(shù)的解析式,指出其定義域,判斷并證明上的單調(diào)性

3)在函數(shù)的圖象上是否分別存在點關(guān)于直線對稱,若存在,求出點的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的值域為A.

(1)當(dāng)的為偶函數(shù)時,求的值;

(2) 當(dāng), A上是單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,(其中),若,且函數(shù)的圖象關(guān)于點對稱,在處取 得最小值,試探討應(yīng)該滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合均為實數(shù)集的子集,記.

(1)已知,試用列舉法表示;

(2)設(shè),當(dāng)時,曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;

3)在(2)的條件下,對于滿足,且的任意正整數(shù),不等式恒成立, 求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2).

根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù)(顆)和溫差具有線性相關(guān)關(guān)系.

附:,

1)求綠豆種子出芽數(shù)(顆)關(guān)于溫差的回歸方程;

2)假如41日至7日的日溫差的平均值為11℃,估計47日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的右焦點為,過點的直線(不與軸重合)與橢圓相交于,兩點,直線軸相交于點,過點,垂足為D.

1)求四邊形為坐標(biāo)原點)面積的取值范圍;

2)證明直線過定點,并求出點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知鈍角中,角A,B,C的對邊分別為a,b,c,其中A為鈍角,若,且.

1)求角C;

2)若點D滿足,且,求的周長.

查看答案和解析>>

同步練習(xí)冊答案