【題目】設(shè)集合均為實(shí)數(shù)集的子集,記.

(1)已知,試用列舉法表示

(2)設(shè),當(dāng)時,曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;

3)在(2)的條件下,對于滿足,且的任意正整數(shù),不等式恒成立, 求實(shí)數(shù)的最大值.

【答案】(1);(2);(3).

【解析】

1)根據(jù)新定義,直接計算,即可.

2)當(dāng)時,曲線表示為焦點(diǎn)在軸上的雙曲線,確定,則,.所以中的所有元素?zé)o重復(fù),,用分組求和法,求所有元素之和.

3)由恒成立,可知恒成立.,再根據(jù)均值定理,求解即可.

(1)因?yàn)?/span>,所以當(dāng)時,

(2) 當(dāng)時,曲線

即曲線表示雙曲線,,當(dāng)成立.

顯然當(dāng)時,

中的所有元素?zé)o重復(fù),即

又因?yàn)?/span>,所以為等差數(shù)列,即

所以

(3)恒成立恒成立

,且的任意正整數(shù)

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,若對任意的,均有,求的取值范圍.

注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若過點(diǎn)可作曲線的切線恰有兩條,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).

1)若、,證明:函數(shù)必有局部對稱點(diǎn);

2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍;

3)若函數(shù)上有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若曲線處的切線方程為,求的值;

(2)在(1)的條件下,求函數(shù)零點(diǎn)的個數(shù);

(3)若不等式對任意都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線經(jīng)過點(diǎn),其傾斜角為,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和極坐標(biāo)方程;

2)若直線與曲線有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足

(1)求的通項公式;

(2)求數(shù)列的前項和

查看答案和解析>>

同步練習(xí)冊答案