5.在同一直角坐標(biāo)系中,函數(shù)f(x)=xa(x≥0),g(x)=logax的圖象可能是(  )
A.B.C.D.

分析 對a的范圍進(jìn)行討論,判斷f(x)的單調(diào)性和增長快慢,判斷g(x)的單調(diào)性,得出結(jié)論.

解答 解:由g(x)=logax有意義可知a>0且a≠1,
∴f(x)=xa在[0,+∞)是過原點(diǎn)的增函數(shù),排除A;
(1)若a>1,則g(x)為過點(diǎn)(1,0)的增函數(shù),f′(x)=axa-1
∴f′(x)是增函數(shù),即f(x)的增加速度逐漸變大,排除C,
(2)若0<a<1,則g(x)為過點(diǎn)(1,0)的減函數(shù),f′(x)=axa-1,
∴f′(x)是減函數(shù),即f(x)的增加速度逐漸減小,排除B,
故選D.

點(diǎn)評 本題考查了基本初等函數(shù)的性質(zhì),導(dǎo)數(shù)的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三角形的頂點(diǎn)分別為A(-1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點(diǎn)C,且在l上不存在到A,B兩點(diǎn)的距離相等的點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等比數(shù)列{an}滿足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$,則a3=(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2(3x-$\frac{π}{6}$),求函數(shù)y=f(x)在x=$\frac{π}{6}$處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-(2a+1)x+alnx(a>0),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在長方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的動點(diǎn),則當(dāng)BQ+QD1的長度取得最小值時(shí),直線B1Q與直線AD所成角的正切值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.$\int_3^9{\frac{1}{x}}dx$等于( 。
A.ln3B.2ln3C.-ln3D.3ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函數(shù)f(x)的極值.
(Ⅱ)若x0是函數(shù)g(x)的極大值點(diǎn),證明:x0lnx0-ax02>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.二次函數(shù)f(x)的圖象經(jīng)過兩點(diǎn)(0,3),(2,3)且最大值是5,則該函數(shù)的解析式是( 。
A.f(x)=2x2-8x+11B.f(x)=-2x2+8x-1C.f(x)=2x2-4x+3D.f(x)=-2x2+4x+3

查看答案和解析>>

同步練習(xí)冊答案