2.我國南宋時期的著名數(shù)學家秦九韶在他的著作《數(shù)學九章》中提出了秦九韶算法來計算多項式的值,在執(zhí)行如圖算法的程序框圖時,若輸入的n=5,x=2,則輸出V的值為(  )
A.15B.31C.63D.127

分析 根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構計算并輸出變量v的值,模擬程序的運行過程,可得答案.

解答 解:∵輸入的x=2,n=5,
故v=1,
i=4,v=1×2+1=3
i=3,v=3×2+1=7
i=2,v=7×2+1=15
i=1,v=15×2+1=31
i=0,v=31×2+1=63
i=-1,跳出循環(huán),輸出v的值為63,
故選:C

點評 本題考查的知識點是程序框圖,當循環(huán)次數(shù)不多,或有規(guī)律可循時,可采用模擬程序法進行解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.一個凸多面體,其三視圖如圖,則該幾何體的體積為(  )
A.5$\sqrt{2}$B.6$\sqrt{2}$C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;
(2)(理科)求cos($\frac{5π}{6}$-2α)的值.
(文科)求cos2α+sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.中國古代有計算多項式值的秦九韶算法,如圖是實現(xiàn)該算法的程序框圖,執(zhí)行該程序框圖,若輸入的x=3,n=2,依次輸入的a為2,2,5,則輸出的s=( 。
A.8B.17C.29D.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖所示,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,AB=1,BC=PA=2,則該幾何體外接球的表面積為( 。
A.B.C.12πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若集合A={x∈N|5+4x-x2>0},B={x|x<3},則A∩B等于(  )
A.(-1,3)B.{1,2}C.0,3)D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=sinxcos({x+\frac{π}{6}})+1$.
(Ⅰ)求函數(shù)f(x)的最大值及取得最大值時的x的集合;
(Ⅱ)△ABC中,a,b,c分別是A,B,C的對邊,$f(C)=\frac{5}{4},b=2,\overrightarrow{AC}•\overrightarrow{BC}=12$,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)已知實數(shù)a,b,c滿足a+b+c=1,求a2+b2+c2的最小值;
(2)已知正數(shù)a,b,c滿足a+b+c=1,求證:$({a+\frac{1}{a}})({b+\frac{1}})({c+\frac{1}{c}})≥\frac{1000}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前7次考試的數(shù)學成績x、物理成績y進行分析.下面是該生7次考試的成績.
數(shù)學108103137112128120132
物理74718876848186
(Ⅰ)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的說明;
(Ⅱ)已知該生的物理成績y與數(shù)學成績x是線性相關的,求物理成績y與數(shù)學成績x的回歸直線方程
(Ⅲ)若該生的物理成績達到90分,請你估計他的數(shù)學成績大約是多少?
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

同步練習冊答案