7.設(shè)向量$\overrightarrow{a}$=(1,2m),$\overrightarrow$=(m+1,1),$\overrightarrow{c}$=(m,3),若($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow$,則|$\overrightarrow{a}$|=$\sqrt{17}$.

分析 利用平面向量坐標(biāo)運(yùn)算法則求出$\overrightarrow{a}+\overrightarrow{c}$,再利用向量垂直的性質(zhì)求出$\overrightarrow{a}$,由此能求出|$\overrightarrow{a}$|.

解答 解:∵向量$\overrightarrow{a}$=(1,2m),$\overrightarrow$=(m+1,1),$\overrightarrow{c}$=(m,3),
∴$\overrightarrow{a}$+$\overrightarrow{c}$=(1+m,2m+3),
∵($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow$,
∴(1+m)(m+1)+2m+3=0,
解得m=-2,
∴$\overrightarrow{a}$=(1,-4),
∴|$\overrightarrow{a}$|=$\sqrt{1+16}$=$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點(diǎn)評(píng) 本題考查向量的模的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)直線l與拋物線y2=4x相交于不同兩點(diǎn)A、B,與圓(x-5)2+y2=r2(r>0)相切于點(diǎn)M,且M為線段AB的中點(diǎn).
(1)若△AOB是正三角形(O為坐標(biāo)原點(diǎn)),求此三角形的邊長(zhǎng);
(2)若r=4,求直線l的方程;
(3)試對(duì)r∈(0,+∞)進(jìn)行討論,請(qǐng)你寫(xiě)出符合條件的直線l的條數(shù)(只需直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)y=lnx-mx(m∈R)
(1)若函數(shù)y=f(x)過(guò)點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)A(4,4)在拋物線y2=2px (p>0)上,該拋物線的焦點(diǎn)為F,過(guò)點(diǎn)A作該拋物線準(zhǔn)線的垂線,垂足為E,則∠EAF的平分線所在的直線方程為( 。
A.2x+y-12=0B.x+2y-12=0C.2x-y-4=0D.x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{(1-i)^{2}}{1+i}$的共軛復(fù)數(shù)$\overline{z}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系中,圓C的方程是x2+y2-4x=0,圓心為C,在以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C1:ρ=-4$\sqrt{3}$sinθ與圓C相交于A,B兩點(diǎn).
(1)求曲線C1和直線AB的直角坐標(biāo)方程;
(2)若過(guò)圓心C的直線C2:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))交直線AB于點(diǎn)D,交y軸于點(diǎn)E,求|CD|:|CE|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若$\left\{\begin{array}{l}{x+4y-8≤0}\\{x≥0}\\{y>0}\end{array}\right.$在區(qū)域內(nèi)任取一點(diǎn)P,則點(diǎn)P落在圓x2+y2=2內(nèi)的概率為$\frac{π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,則z=x+y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在正方體ABC的-A1B1C1D1中,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則三棱錐P-BCD的俯視圖與正視圖面積之比的最大值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案