【題目】已知函數(shù)f(x)=2cos2x+sin2x﹣4cosx.
(1)求 的值;
(2)求f(x)的最大值和最小值.

【答案】
(1)解: = ;
(2)解:f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx

=3cos2x﹣4cosx﹣1

=

因?yàn)閏osx∈[﹣1,1],

所以當(dāng)cosx=﹣1時(shí),f(x)取最大值6;當(dāng) 時(shí),取最小值﹣


【解析】(1)把x= 代入到f(x)中,利用特殊角的三角函數(shù)值求出即可;(2)利用同角三角函數(shù)間的基本關(guān)系把sin2x變?yōu)?﹣cos2x,然后利用二倍角的余弦函數(shù)公式把cos2x變?yōu)?cos2x﹣1,得到f(x)是關(guān)于cosx的二次函數(shù),利用配方法把f(x)變成二次函數(shù)的頂點(diǎn)式,根據(jù)cosx的值域,利用二次函數(shù)求最值的方法求出f(x)的最大值和最小值即可.
【考點(diǎn)精析】掌握二倍角的余弦公式和三角函數(shù)的最值是解答本題的根本,需要知道二倍角的余弦公式:;函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓x2+4y2=4,直線l:y=x+m
(1)若l與橢圓有一個(gè)公共點(diǎn),求m的值;
(2)若l與橢圓相交于P、Q兩點(diǎn),且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,且的最小值為

(1)求的值;

(2)若不等式對(duì)任意恒成立,其中是自然對(duì)數(shù)的底數(shù),求的取值范圍;

(3)設(shè)曲線與曲線交于點(diǎn),且兩曲線在點(diǎn)處的切線分別為, .試判斷, 軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個(gè)數(shù);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點(diǎn),且BE⊥B1C.

(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng) 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是(
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin( x﹣
D.y=sin( x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)F(x)= ,其中f(x)=log2(x2+1),g(x)=log2(|x|+7).
(1)在實(shí)數(shù)集R上用分段函數(shù)形式寫出函數(shù)F(x)的解析式;
(2)求函數(shù)F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】證明與化簡(jiǎn).
(1)求證:cotα=tanα+2cot2α;
(2)請(qǐng)利用(1)的結(jié)論證明:cotα=tanα+2tan2α+4cot4α;
(3)請(qǐng)你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:
(4)化簡(jiǎn):tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的全面積為(
A.10+4 ?+4
B.10+2 ?+4 ??
C.14+2 ?+4
D.14+4 ?+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(mx2+mx+1),若此函數(shù)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是;若此函數(shù)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案