5.在△ABC中,內(nèi)角A,B,C的對邊為a,b,c,已知c=5,B=$\frac{2π}{3}$,△ABC的面積為$\frac{15\sqrt{3}}{4}$,則cos2A=$\frac{71}{98}$.

分析 根據(jù)△ABC的面積為$\frac{15\sqrt{3}}{4}$,求得a的值,利用余弦定理求得b的值,再利用正弦定理求得sinA的值,由二倍角的余弦求得cos2A的值.

解答 解:△ABC中,∵已知c=5,B=$\frac{2π}{3}$,△ABC的面積為$\frac{15\sqrt{3}}{4}$=$\frac{1}{2}$ac•sinB=$\frac{1}{2}•a•5•\frac{\sqrt{3}}{2}$,∴a=3.
由余弦定里可得b=$\sqrt{{a}^{2}{+c}^{2}-2ac•cosB}$=$\sqrt{9+25-2•3•5•(-\frac{1}{2})}$=7,
再由正弦定理可得$\frac{sinB}$=$\frac{a}{sinA}$,即$\frac{7}{\frac{\sqrt{3}}{2}}$=$\frac{3}{sinA}$,∴sinA=$\frac{3\sqrt{3}}{14}$,
則cos2A=1-2•$\frac{27}{196}$=$\frac{142}{196}$=$\frac{71}{98}$,
故答案為:$\frac{71}{98}$.

點評 本題主要考查正弦定理、余弦定理的應(yīng)用,二倍角的余弦公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對班級90名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了下列列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)少總計
喜歡玩電腦游戲103545
不喜歡玩玩電腦游戲73845
總計177390
利用獨立性檢驗估計,你認(rèn)為推斷喜歡電腦游戲與認(rèn)為作業(yè)多少有關(guān)系錯誤的概率介于( 。
(觀測值表如下)
P(K2≥k00.500.400.250.15
k00.4550.7081.3232.072
A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(2x-1)2+5x
(1)求f′(x)
(2)求曲線y=f(x)在點(2,19)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{a-lo{g}_{2}(x+2),x≥0}\end{array}\right.$是奇函數(shù),則f(x)>-1的解集為(  )
A.(-2,0]∪(2,+∞)B.(-2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ea(x-1)-ax2,a為不等于零的常數(shù).
(Ⅰ)當(dāng)a<0時,求函數(shù)f′(x)的零點個數(shù);
(Ⅱ)若對任意x1,x2,當(dāng)x1<x2時,f(x2)-f(x1)>a(${e}^{a({x}_{1}-1)}$-2x1)(x2-x1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中,正確的是(  )
①?x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個角是直角的四邊形不一定是平面圖形.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z=$\frac{1+2i}{(1-i)^{2}}$,則z的虛部是(  )
A.$\frac{1}{2}$iB.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,若復(fù)數(shù)z=$\frac{a-i}{3+i}$(i是虛數(shù)單位)的實部為$\frac{1}{2}$,則復(fù)數(shù)z的虛部為( 。
A.$\frac{13}{30}$B.-$\frac{13}{30}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足z(l+i)=3-i,則|$\overline{z}$|等于(  )
A.$\sqrt{5}$B.5C.1-2iD.1+2i

查看答案和解析>>

同步練習(xí)冊答案