7.設(shè)點F為拋物線y2=4x的焦點,A,B是拋物線上兩點,線段AB的中垂線交x軸于點D(5,0),則|AF|+|BF|=( 。
A.5B.6C.8D.10

分析 方法一:由拋物線的焦點弦公式求得丨AF丨+丨BF丨=x1+x2+2,由丨AD丨=丨BD丨,利用兩點之間的距離公式即可求得x1+x2=6,即可求得|AF|+|BF|;
方法二:由拋物線的焦點弦公式求得丨AF丨+丨BF丨=x1+x2+2,利用點差法求得直線AB的斜率,即可求得直線AB的中垂線方程,將D代入即可求得x1+x2,即可求得|AF|+|BF|.

解答 解:方法一:拋物線y2=4x的焦點F(1,0),
A(x1,y1),B(x2,y2),y12=4x1,y22=4x2,
則丨AF丨+丨BF丨=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+2,
由線段AB的中垂線交x軸于點D(5,0),則丨AD丨=丨BD丨,
(x1-5)2+y12=(x2-5)2+y22,整理得:(x1+x2-10)(x1-x2)=y22-y12=4(x2-x1),
x1+x2-10=-4,x1+x2=6,
∴|AF|+|BF|=8.
故選C.
方法二:拋物線y2=4x的焦點F(1,0),
A(x1,y1),B(x2,y2),y12=4x1,y22=4x2
則丨AF丨+丨BF丨=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+2,
則AB的中點坐標為:($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
由$\left\{\begin{array}{l}{{y}_{1}^{2}=4{x}_{1}}\\{{y}_{2}^{2}=4{x}_{2}}\end{array}\right.$,整理得:(y2-y1)(y2+y1)=4(x2-x1),
直線AB的斜率k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{4}{{y}_{1}+{y}_{2}}$,則直線AB的中垂線的斜率-$\frac{{y}_{1}+{y}_{2}}{4}$,
中垂線方程y-$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{{y}_{1}+{y}_{2}}{4}$(x-$\frac{{x}_{1}+{x}_{2}}{2}$),
將D(5,0),代入,解得:x1+x2=6,
∴|AF|+|BF|=8.
故選C.

點評 本題考查拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,拋物線的焦點弦公式,考查點差法的應(yīng)用,直線的斜率公式,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.在(1+x)n(n∈N*)二項展開式中x2的系數(shù)為15,則${∫}_{0}^{1}$xndx=( 。
A.$\frac{1}{7}$B.7C.15D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xoy中,點T(-8,0),點R,Q分別在x和y軸上,$\overrightarrow{QT}•\overrightarrow{QR}=0$,點P是線段RQ的中點,點P的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線L與圓(x+1)2+y2=1相切,直線L與曲線E交于M,N,線段MN中點為A,曲線E上存在點C滿足$\overrightarrow{OC}$=2λ$\overrightarrow{OA}$(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知i為虛數(shù)單位,若z1=1+2i,z2=1-i,則復(fù)數(shù)$\frac{z_1}{z_2^2}$在復(fù)平面內(nèi)對應(yīng)點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在平面直角坐標系上,有一點列${P_1},{P_2},…,{P_{n-1}},{P_n},…({n∈{N^*}})$,設(shè)點Pn的坐標(n,an),其中${a_n}=\frac{2}{n}(n∈{N^*})$,過點Pn,Pn+1的直線與兩坐標軸所圍成的三角形面積為bn,設(shè)Sn表示數(shù)列{bn}的前n項和,則S5=$\frac{125}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.各項都是正數(shù)的數(shù)列{an}滿足an+1=2an,且a3•a11=16,則a5=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知i表示虛數(shù)單位,則$|\frac{i}{2i+1}|$=( 。
A.1B.5C.$\frac{{\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,AD=DC=PA=2,BC=4,E為PA的中點,M為棱BC上一點.
(Ⅰ)當BM為何值時,有EM∥平面PCD;
(Ⅱ)在(Ⅰ)的條件下,求點P到平面DEM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.將直角三角形ABC沿斜邊上的高AD折成120°的二面角,已知直角邊AB=4$\sqrt{3}$,AC=4$\sqrt{6}$,那么下面說法正確的是( 。
A.平面ABC⊥平面ACD
B.四面體D-ABC的體積是$\frac{16}{3}\sqrt{6}$
C.二面角A-BC-D的正切值是$\frac{{\sqrt{42}}}{5}$
D.BC與平面ACD所成角的正弦值是$\frac{{\sqrt{21}}}{14}$

查看答案和解析>>

同步練習冊答案