16.如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A-PB-E的大小為(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 由題意可知PD⊥DA,PD⊥DC,AD⊥DC,分別以DA、DC、DP所在直線為x、y、z軸建立空間直角坐標(biāo)系,然后分別求出平面PAB與平面PEB的一個法向量,由兩法向量所成角的余弦值求得二面角A-PB-E的大小.

解答 解:由$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,
可得:PD⊥DA,PD⊥DC,AD⊥DC,
分別以DA、DC、DP所在直線為x、y、z軸建立空間直角坐標(biāo)系,
∵AD=AB=2,PD=2EC=2,
∴A(2,0,0),B(2,2,0),P(0,0,2),E(0,2,1),
$\overrightarrow{PB}=(2,2,-2)$,$\overrightarrow{AB}=(0,2,0)$,$\overrightarrow{BE}=(-2,0,1)$.
設(shè)平面PAB的一個法向量為$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=2x+2y-2z=0}\\{\overrightarrow{m}•\overrightarrow{AB}=2y=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}=(1,0,1)$;
設(shè)平面PEB的一個法向量為$\overrightarrow{n}$=(a,b,c),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=2a+2b-2c=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-2a+c=0}\end{array}\right.$,取c=2,得$\overrightarrow{n}=(1,1,2)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{3}{\sqrt{2}×\sqrt{6}}=\frac{\sqrt{3}}{2}$.
∴二面角A-PB-E的大小為$\frac{5π}{6}$.
故選:D.

點評 本題考查二面角的平面角的求法,訓(xùn)練了利用空間向量求二面角的大小,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出下列命題:
①若數(shù)列{an}為等差數(shù)列,Sn為其前n項和,則Sn,S2n-Sn,S3n-S2n是等差數(shù)列;
②若數(shù)列{an}為等比數(shù)列,Sn為其前n項和,則Sn,S2n-Sn,S3n-S2n是等比數(shù)列;
③若數(shù)列{an},{bn}均為等差數(shù)列,則數(shù)列{an+bn}為等差數(shù)列;
④若數(shù)列{an},{bn}均為等比數(shù)列,則數(shù)列{an•bn}為等比數(shù)列
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+4a,x>3}\\{2x+{a}^{2},x≤3}\end{array}\right.$,其中a>0,若f(x)的值域為R,則實數(shù)a的取值范圍是[7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,面積為10的矩形中有一封閉曲線圍成的陰影區(qū)域,在矩形中隨機撒一粒種子,它落在陰影區(qū)域內(nèi)的概率為$\frac{3}{5}$,則陰影區(qū)域的面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-2(a-2)x-b2+13.
(1)先后兩次拋擲一枚質(zhì)地均勻的骰子(骰子六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字一次記為a,b,求方程f(x)=0有兩個不等正根的概率;
(2)如果a∈[2,6],求函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且asinAsinB+bcos2A=$\frac{4}{3}$a.
(1)求$\frac{a}$;
(2)若c2=a2+$\frac{1}{4}$b2,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(2sin$\frac{x}{4}$,2sin$\frac{x}{4}$),$\overrightarrow$=(cos$\frac{x}{4}$,-$\sqrt{3}$sin$\frac{x}{4}$).
(Ⅰ)求函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{3}$的最小正周期;
(Ⅱ)若β=$\frac{2sinα}{f(2α+\frac{π}{3})}$,g(β)=tan2α,α≠$\frac{π}{4}$+$\frac{kπ}{2}$且α≠$\frac{π}{2}$+kπ(k∈Z),數(shù)列{an}滿足a1=$\frac{1}{4}$,an+12=$\frac{1}{2}$ang(an)(n≤16且n∈N*),令bn=$\frac{1}{{{a}_{n}}^{2}}$,求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在五個數(shù)字1,2,3,4,5中,若隨機取出三個數(shù)字,則剩下兩個數(shù)字至少有一個是偶數(shù)的概率為0.7.(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(sinx-cosx,2cosx),$\overrightarrow$=(sinx+cosx,sinx)
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求tan2x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{5}$,求sin4x的值.

查看答案和解析>>

同步練習(xí)冊答案