2.已知sinα=$\frac{12}{13}$,cosβ=$\frac{4}{5}$,且α是第二象限角,β是第四象限角,那么sin(α-β)等于(  )
A.$\frac{33}{65}$B.$\frac{63}{65}$C.-$\frac{16}{65}$D.-$\frac{56}{65}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得cosα 和sinβ 的值,再利用兩角差的正弦公式求得sin(α-β)的值

解答 解:因?yàn)棣潦堑诙笙藿牵襰inα=$\frac{12}{13}$,所以cosα=-$\sqrt{1-\frac{144}{169}}$=-$\frac{5}{13}$.
又因?yàn)棣率堑谒南笙藿,cosβ=$\frac{4}{5}$,所以sinβ=-$\sqrt{1-\frac{16}{25}}$=-$\frac{3}{5}$.
sin(α-β)=sinαcosβ-cosαsinβ=$\frac{12}{13}$×$\frac{4}{5}$-(-$\frac{5}{13}$)×(-$\frac{3}{5}$)=$\frac{48-15}{65}$=$\frac{33}{65}$.
故選:A

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[-2,0]時,f(x)=x2+2x,若x∈[2,4]時,$f(x)≥2log_2^{(t+1)}$恒成立,則實(shí)數(shù)t的取值范圍是(-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若P=$\sqrt{a}$+$\sqrt{a+5}$,Q=$\sqrt{a+2}$+$\sqrt{a+3}$(a≥0),則P,Q的大小關(guān)系是( 。
A.P>QB.P=QC.P<QD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了判斷高中生的文理科選修是否與性別有關(guān),隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
 理科文科
1410
620
(1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷文理科選修與性別是否有關(guān)?
(2)利用列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.05的前提下認(rèn)為選修文理科與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx+$\frac{1-{x}^{2}}{{x}^{2}}$,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時,不等式f(x)≥$\frac{1}{x}$-e1-x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i是虛數(shù)單位,且復(fù)數(shù)z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是實(shí)數(shù),則實(shí)數(shù)b的值為( 。
A.6B.-6C.0D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知復(fù)數(shù)z=a(1+i)-2為純虛數(shù),則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)拋物線y2=2x與過其焦點(diǎn)的直線交于A,B兩點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OB}$的值為( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=|lg(x+1)|,實(shí)數(shù)a,b滿足:$a<b,且f(a)=f({-\frac{b+1}{b+2}})$,則f(8a+2b+11)取最小值時,a+b的值為$-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案