4.如圖,正方形ABCD中,AC與BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,則λ+μ的值為( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

分析 以D為坐標(biāo)原點(diǎn),建立如圖所示的直角坐標(biāo)系,設(shè)正方形的邊長(zhǎng)為4,分別表示出各點(diǎn)的坐標(biāo),再根據(jù)$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,得到關(guān)于λ,μ的方程組解得即可.

解答 解:以D為坐標(biāo)原點(diǎn),建立如圖所示的直角坐標(biāo)系,設(shè)正方形的邊長(zhǎng)為4,
∴B(4,4),A(0,4),E(1,1),O(2,2),F(xiàn)(4,1),
∴$\overrightarrow{BD}$=(-4,-4),$\overrightarrow{AE}$=(1,-3),$\overrightarrow{OF}$=(2,-1),
∵$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,
∴(-4,-4)=(λ,-3λ)+(2μ,-μ)=(λ+2μ,-3λ-μ),
∴$\left\{\begin{array}{l}{λ+2μ=-4}\\{-3λ-μ=-4}\end{array}\right.$,
解得λ=$\frac{12}{5}$,μ=-$\frac{16}{5}$,
∴λ+μ=-$\frac{4}{5}$,
故選:D

點(diǎn)評(píng) 本題考查了向量坐標(biāo)的是運(yùn)算,關(guān)鍵是構(gòu)造平面直角坐標(biāo)系,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)同時(shí)滿足:①對(duì)于定義域上的任意x,恒有f(x)+f(-x)=0;②對(duì)于定義域上的任意x1,x2,當(dāng)x1≠x2時(shí),恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則稱函數(shù)f(x)為“理想函數(shù)“.下列四個(gè)函數(shù)中:①f(x)=$\frac{1}{x}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,能稱為“理想函數(shù)”的有③(寫出所有滿足要求的函數(shù)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖中網(wǎng)格紙的小正方形的邊長(zhǎng)是1,復(fù)平面內(nèi)點(diǎn)Z所表示的復(fù)數(shù)z滿足(z1-i)•z=1,則復(fù)數(shù)z1=( 。
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在等腰三角形ABC中,∠A=150°,AC=AB=1,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x+y-9≤0}\\{x≥1}\end{array}}\right.$,則z=5x+3y的最大值為35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的投影為-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若b=c-2bcosA.
(1)求證:A=2B;
(2)若5b=3c,$a=4\sqrt{6}$,求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=PB,E,F(xiàn)分別是PA,PB的中點(diǎn).
(1)在圖中畫出過(guò)點(diǎn)E,F(xiàn)的平面α,使得α∥平面PCD(須說(shuō)明畫法,并給予證明);
(2)若過(guò)點(diǎn)E,F(xiàn)的平面α∥平面PCD且截四棱錐P-ABCD所得截面的面積為$\frac{3\sqrt{2}}{2}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)[x]表示不小于實(shí)數(shù)x的最小整數(shù),如[2.6]=3,[-3.5]=-3.已知函數(shù)f(x)=[x]2-2[x],若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個(gè)零點(diǎn),則k的取值范圍是( 。
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

同步練習(xí)冊(cè)答案