3.已知$sinα=-\frac{{\sqrt{5}}}{5}$,α為第四象限角,求$\frac{cosα+sinα}{cosα-sinα}$的值.

分析 利用同角三角函數(shù)的基本關(guān)系,求得cosα tanα的值,可得 $\frac{cosα+sinα}{cosα-sinα}$=$\frac{1+tanα}{1-tanα}$ 的值.

解答 解:∵已知$sinα=-\frac{{\sqrt{5}}}{5}$,α為第四象限角,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{2\sqrt{5}}{5}$,$tanα=-\frac{1}{2}$,
∴$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1+tanα}{1-tanα}$=$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示,M,N分別是這段圖象的最高點(diǎn)與最低點(diǎn),且OM⊥ON,則A=( 。
A.$\frac{π}{6}$B.$\frac{\sqrt{7}π}{12}$C.$\frac{\sqrt{7}π}{6}$D.$\frac{\sqrt{7}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓M:x2+y2-2x+ay=0(a>0)被x軸和y軸截得的弦長(zhǎng)相等,則圓M被直線x+y=0截得的弦長(zhǎng)為(  )
A.4B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知關(guān)于x的函數(shù)f(x)=x2-2$\sqrtx+{a^2}$,若點(diǎn)(a,b)是區(qū)域$\left\{\begin{array}{l}x+y-6≤0\\ x>0\\ y>0\end{array}$內(nèi)的隨機(jī)點(diǎn),則函數(shù)f(x)在R上有零點(diǎn)的概率為(  )
A.$\frac{2}{3}$B.$\frac{11}{27}$C.$\frac{1}{3}$D.$\frac{5}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若$|{\overrightarrow{AB}+\overrightarrow{AC}}|=|{\overrightarrow{AB}-\overrightarrow{AC}}|$,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形C.等邊三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0;②當(dāng)-1≤x≤3時(shí),y<0;③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2;④9a+3b+c=0其中正確的是( 。
A.①②④B.①④C.①②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓的方程為:$\frac{x^2}{4}+\frac{y^2}{3}=1$,點(diǎn)P的坐標(biāo)為$(1,\frac{3}{2})$,一條不過點(diǎn)P直線l:y=kx+b交橢圓于A,B,PA⊥PB,且AB被y軸平分,則直線l的方程為y=$±\frac{3}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知log32=a,log27=b,則log37等于(  )
A.a+bB.a-bC.abD.$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線y2=2x,點(diǎn)P為拋物線上任意一點(diǎn),P在y軸上的射影為Q,點(diǎn)M(2,3),則PQ與PM的長(zhǎng)度之和的最小值為$\frac{3\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案