18.如圖,PA切圓于點(diǎn)A,直線PCB交圓于C,B兩點(diǎn),切線長(zhǎng)PA=4$\sqrt{2}$,PC=4,則$\frac{AB}{AC}$等于( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.以上結(jié)果都不對(duì)

分析 由題意,△PAC∽△PBA,利用比例關(guān)系,求出PB,即可求出$\frac{AB}{AC}$.

解答 解:由題意,△PAC∽△PBA,
∴$\frac{PA}{PB}=\frac{PC}{PA}=\frac{AC}{AB}$,
∴PB=8,$\frac{AB}{AC}$=$\frac{8}{4\sqrt{2}}$=$\sqrt{2}$,
故選:A.

點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,過圓外一點(diǎn)P作圓的兩條切線PA、PB,A,B為切點(diǎn),再過P點(diǎn)作圓的一條割線分別與圓交于點(diǎn)C、D,過AB上任一點(diǎn)Q作PA的平行線分別與直線AC、AD交于點(diǎn)E,F(xiàn),證明:QE=QF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.點(diǎn)P(cos2,sin2)所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知:如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,側(cè)面PAD⊥底面ABCD,PA=PD.
(1)證明:PB⊥CB;
(2)設(shè)E為CD的中點(diǎn),PE與底面ABCD所成角為45°,求平面PAD與平面PBE所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x-1|,x≤0}\\{|{x}^{2}-2x|,x>0}\end{array}\right.$,若函數(shù)y=f(x)-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知三棱錐A-BCD中,AB、AC、AD兩兩垂直且長(zhǎng)度均為10,定長(zhǎng)為m(m<6)的線段MN的一個(gè)端點(diǎn)M在棱AB上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在△ACD內(nèi)運(yùn)動(dòng)(含邊界),線段MN的中點(diǎn)P的軌跡的面積為2π,則m的值等于4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(Ⅰ)若,求證:f(x)在(0,+∞)上為增函數(shù);
(Ⅱ)若不等式f(x)≥0的解集為,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法:
(1)f(x)在(-3,1)上是增函數(shù);
(2)x=-1是f(x)的極小值點(diǎn);
(3)f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù);
(4)x=2是f(x)的極小值點(diǎn);
以上正確的序號(hào)為( 。
A.(1)(2)B.(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.曲線C的極坐標(biāo)方程為7ρ22cos2θ-24=0.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)(x,y)在曲線C上,試求x-2y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案