A. | 3 | B. | $\frac{9}{2}$ | C. | 4 | D. | 5 |
分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z經過點A時,直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x-1=0}\\{x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目標函數z=x+2y得z=1+2×2=5
故選:D
點評 本題主要考查線性規(guī)劃的應用,利用圖象平行求得目標函數的最大值和最小值,利用數形結合是解決線性規(guī)劃問題中的基本方法.
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z) | B. | [kπ,kπ+$\frac{π}{4}$](k∈Z) | ||
C. | [$\frac{kπ}{2}$+$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{2}$](k∈Z) | D. | [kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$](k∈Z) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
網店名稱 | A | B | C | D |
x | 3 | 4 | 6 | 7 |
y | 11 | 12 | 20 | 17 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 |
y | 1 | 4 | 6 | 8 | 11 |
A. | $\widehat{y}$=2x-1 | B. | $\widehat{y}$=2x+1 | C. | $\widehat{y}$=2.4x-1.2 | D. | $\widehat{y}$=2.4x-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1:$\sqrt{2}$ | B. | 1:2 | C. | 1:4 | D. | 1:2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com