15.如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.
(1)設點C到墻的距離為x,當x=$\sqrt{3}$m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?

分析 (1)過C作CD⊥AO,垂足為D,則θ=∠ACD-∠BCD,利用差角的正切公式,求tanθ的值;
(2)利用差角的正切公式,我們可以求得tanθ,利用基本不等式可得結(jié)論.

解答 解:(1)作CD⊥AO于D,則$CD=x=\sqrt{3}$,
在直角△CDO中,$DO=\frac{{\sqrt{3}}}{3}x=1$,…(2分)
$tan∠BCD=\frac{BO-OD}{CD}=\frac{1}{{\sqrt{3}}}$,$tan∠ACD=\frac{AO-OD}{CD}=\sqrt{3}$,
因∠BCD,∠ACD都為銳角,所以∠BCD=30°,∠ACD=60°,…(4分)
所以$tanθ=tan{30^0}=\frac{{\sqrt{3}}}{3}$;…(6分)
(2)設∠BCD=α,∠ACD=β.作如下規(guī)定:
當D點在B點下方時α為正,當D點在B點上方時α為負,當D點與B重合時α為零.類似地β也如此規(guī)定.
于是有$α,β∈(-\frac{π}{2},\frac{π}{2})$,θ=β-α,…(8分)
$tanα=\frac{BO-OD}{CD}=\frac{{2-\frac{{\sqrt{3}}}{3}x}}{x}$,$tanβ=\frac{AO-OD}{CD}=\frac{{4-\frac{{\sqrt{3}}}{3}x}}{x}$…(10分)
$tanθ=tan(β-α)=\frac{tanβ-tanα}{1+tanβ•tanα}$=$\frac{{\frac{{4-\frac{{\sqrt{3}}}{3}x}}{x}-\frac{{2-\frac{{\sqrt{3}}}{3}x}}{x}}}{{1+\frac{{4-\frac{{\sqrt{3}}}{3}x}}{x}•\frac{{2-\frac{{\sqrt{3}}}{3}x}}{x}}}$=$\frac{2}{{\frac{4}{3}x+\frac{8}{x}-2\sqrt{3}}}$…(12分)$≤\frac{2}{{2\sqrt{\frac{4}{3}x•\frac{8}{x}}-2\sqrt{3}}}=\frac{{\sqrt{3}}}{{4\sqrt{2}-3}}$…(14分)
當且僅當$\frac{4}{3}x=\frac{8}{x}$,$x=\sqrt{6}$時tanθ最大,從而θ最大,此時C點離墻$\sqrt{6}m$.…(16分)

點評 本題以實際問題為載體,考查差角的正切函數(shù)公式,考查基本不等式的運用,解題的關(guān)鍵是利用差角的正切函數(shù)公式構(gòu)建函數(shù)模型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是470

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)fM(x)的定義域為實數(shù)集R,滿足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有兩個非空真子集A,B,且A∩B=∅,則F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(B)+1}}$的值域為{1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知2k是k與k+3的等比中項,則k等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n,Sn=a1+3a2+32a3+…+3n-1an,利用類似等比數(shù)列的求和方法,可求得4Sn-3nan=n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若數(shù)列{an}的通項公式是an=(-1)n•(3n-2),則a1+a2+a3+…+a30=(  )
A.45B.-45C.1335D.-1335

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合A={x|x2-5x-6<0},B={x||x+2|≤3},則A∩B=( 。
A.{x|-5≤x<-1}B.{x|-5≤x<5}C.{x|-1<x≤1}D.{x|1≤x<5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設P={質(zhì)數(shù)},Q={偶數(shù)},則P∩Q等于( 。
A.{2}B.2C.ND.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某公司生產(chǎn)某種產(chǎn)品的總利潤y(單位:萬元)與總產(chǎn)量x(單位:件)的函數(shù)解析式為y=0.1x-150,若公司想不虧損,則總產(chǎn)量x至少為1500.

查看答案和解析>>

同步練習冊答案