18.若a=sin3,b=sin1.5,c=cos8.5,執(zhí)行如圖所示的程序框圖,輸出的是( 。
A.cB.bC.aD.$\frac{a+b+c}{3}$

分析 分析該程序框圖的功能是求三個數(shù)中的最大值,
比較a、b、c的大小即可.

解答 解:根據(jù)題意,該程序框圖的功能是求三個數(shù)中的最大值,
因為a=sin3>0,
又a=sin(π-3)<b=sin1.5,
c=cos8.5=sin($\frac{5π}{2}$-8.5)<0,
所以c<a<b,
即最大值是b.
故選:B.

點評 本題主要考查了程序框圖和三角函數(shù)的誘導公式、單調(diào)性以及數(shù)據(jù)處理能力和邏輯推理能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1∉平面ABCD).若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是( 。
A.與平面A1DE垂直的直線必與直線BM垂直
B.過E作EG∥BM,G∈平面A1DC,則∠A1EG為定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1-ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直四棱柱底面是邊長為2的菱形,側(cè)面對角線的長為$2\sqrt{3}$,則該直四棱柱的側(cè)面積為16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖(1)在平面六邊形ABCDEF,四邊形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,點M,N分別是AD,BC的中點,分別沿直線AD,BC將△DEF,△BCF翻折成如圖(2)的空間幾何體ABCDEF.
(1)利用下面的結(jié)論1或結(jié)論2,證明:E、F、M、N四點共面;
結(jié)論1:過空間一點作已知直線的垂面,有且只有一個;
結(jié)論2:過平面內(nèi)一條直線作該平面的垂面,有且只有一個.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求二面角A-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.2016年9月30日周杰倫“地表最強”世界巡回演唱會在山西省體育中心紅燈籠體育場舉行.某高校4000名女生,6000名男生中按分層抽樣抽取了50名學生進行了問卷調(diào)查,調(diào)查發(fā)現(xiàn)觀看演唱會與未觀看演唱會的人數(shù)相同,其中觀看演唱會的女生為15人.
(1)根據(jù)調(diào)查結(jié)果完成如下2×2列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.005的前提下認為“觀看演唱會與性別有關(guān)”?
(2)從觀看演唱會的4名男生和3名女生中抽取兩人,求恰好抽到一名男生和一名女生的概率.
  觀看 未觀看 合計
 女生   
 男生   
 合計   50
P(K2≥k00.0250.0100.005 0.001
k05.0246.6357.879 10.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,ABCD是以O為圓心、半徑為2的圓的內(nèi)接正方形,EFGH是正方形ABCD的內(nèi)接正方形,且E、F、G、H分別為AB、BC、CD、DA的中點.將一枚針隨機擲到圓O內(nèi),用M表示事件“針落在正方形ABCD內(nèi)”,N表示事件“針落在正方形EFGH內(nèi)”,則P(N|M)=( 。
A.$\frac{1}{π}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,則a的取值范圍是( 。
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)與兩條平行直線l1:y=x+b與l2:y=x-b分別相交于四點A,B,D,C,且四邊形ABCD的面積為$\frac{{8{b^2}}}{3}$,則橢圓E的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.現(xiàn)有編號為①、②、③的三個三棱錐(底面水平放置),俯視圖分別為圖1、圖2、圖3,則至少存在一個側(cè)面與此底面互相垂直的三棱錐的所有編號是( 。
A.B.①②C.②③D.①②③

查看答案和解析>>

同步練習冊答案