16.定點M(1,1),動A、B點在圓C:x2+y2=4上運動且MB垂直MA,則弦AB長度最小值為$\sqrt{6}$-$\sqrt{2}$..

分析 設(shè)AB的中點為P,依題意,|MP|=$\frac{1}{2}$|AB|,|MP|最小時,弦AB長度最小,M、O、P三點共線時,滿足題意,從而可得答案.

解答 解:設(shè)AB的中點為P,依題意,|MP|=$\frac{1}{2}$|AB|,|MP|最小時,弦AB長度最小,M、O、P三點共線時,滿足題意,
此時△MAB是等腰直角三角形,MB∥x軸.
y=1時,x=±$\sqrt{3}$,∴|MB|=$\sqrt{3}$-1,
∴弦AB長度最小值為$\sqrt{2}$|MB|=$\sqrt{6}$-$\sqrt{2}$.
故答案為:$\sqrt{6}$-$\sqrt{2}$.

點評 本題考查直線與圓的位置關(guān)系,考查弦長的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.討論當k為何值時,直線y=kx+2與圓x2+y2=1:
(1)相交?
(2)相切?
(3)相離?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0點C在線段AB上,∠AOC=30°,用$\overrightarrow{OA}$和$\overrightarrow{OB}$來表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.焦點在x軸上的雙曲線,虛半軸長為1,離心率為$\frac{2\sqrt{3}}{3}$.
(1)求雙曲線的標準方程;
(2)已知直線l過點(4,-2),且與雙曲線有一個公共點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,透明塑料制成的長方體ABCD-A′B′C′D內(nèi)灌進一些水,固定容器底面一邊BC與地面上,再將容器傾斜.隨著傾斜度的不同,有下面四個命題:
①有水的部分始終呈棱柱形,沒水的部分也始終呈棱柱形;
②棱A′D′始終與水面所在平面平行;
③水面EFGH所在四邊形的面積為定值;
④當容器傾斜如圖3所示時,BE•BF是定值.
其中正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點A($\sqrt{2}$,0)與圓O:x2+y2=1上B,C兩點共線,當△OBC的面積最大時,O到AB的距離為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=PB,AD=DB,則( 。
A.PD?平面ABCB.PD⊥平面ABC
C.PD與平面ABC相交但不垂直D.PD∥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對于函數(shù)f(x),若存在x0∈Z,滿足|f(x0)|≤$\frac{1}{4}$,則稱x0為函數(shù)的一個“近零點”,已知函數(shù)f(x)=ax2+bx+c(a>0)有四個不同的“近零點”,則a的取值范圍是( 。
A.[$\frac{2}{9}$,$\frac{1}{4}$)B.[$\frac{2}{9}$,$\frac{1}{4}$]C.(0,$\frac{2}{9}$]D.(0,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.投資生產(chǎn)某種產(chǎn)品,并用廣告方式促銷,已知生產(chǎn)這種產(chǎn)品的年固定投資為10萬元,每生產(chǎn)1萬件產(chǎn)品還需投入18萬元,又知年銷量W(萬件)與廣告費x(萬元)之間的函數(shù)關(guān)系為W=$\frac{kx+1}{x+1}$(x≥0),且知投入廣告費1萬元時,可多銷售2萬件產(chǎn)品,預(yù)計此種產(chǎn)品年銷售收入M(萬元)等于年成本(萬元)(年成本中不含廣告費用)的150%與年廣告費用50%的和.
(1)試將年利潤y(萬元)表示為年廣告費x(萬元)的函數(shù);
(2)當年廣告費為多少萬元時,年利潤最大?最大年利潤是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案