6.已知奇函數(shù)f(x)是定義在R上的連續(xù)函數(shù),滿足f(2)=$\frac{5}{3}$,且f(x)在(0,+∞)上的導(dǎo)函數(shù)f'(x)<x2,則不等式f(x)>$\frac{{{x^3}-3}}{3}$的解集為(-∞,2).

分析 構(gòu)造函數(shù)F(x)=f(x)-$\frac{1}{3}$x3+1,則F(x)為減函數(shù),且F(0)=0,從而得出f(x)<$\frac{1}{3}$x3-1即F(x)<0的解集.

解答 解:設(shè)F(x)=f(x)-$\frac{1}{3}$x3+1,∵f'(x)<x2
∴F′(x)=f′(x)-x2<0,
∴F(x)在(0,+∞)上遞減,
又F(2)=f(2)-$\frac{{2}^{3}-3}{3}$=0,
故不等式的解集是:(-∞,2),
故答案為:(-∞,2).

點評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,奇函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2且a∈N),則a2016等于( 。
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.四邊形ABCD中,∠BAC=90°,BD+CD=2,則它的面積最大值等于$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對于使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值叫做f(x)的上確界,若正數(shù)a,b∈R且a+b=1,則$-\frac{1}{2a}-\frac{2}$的上確界為(  )
A.$-\frac{9}{2}$B.$\frac{9}{2}$C.$\frac{1}{4}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,若在曲線C的右支上存在點P,使得△PF1F2的內(nèi)切圓半徑為a,圓心記為M,又△PF1F2的重心為G,滿足MG∥F1F2,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|x2+3x+2>0},集合N={-2,-1,0,1,2},則M∩N=( 。
A.{-2,-1}B.{0,1,2}C.{-1,0,1,2}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)隨機變量X與Y相互獨立,概率密度分別為fX(x)=$\left\{\begin{array}{l}{2{e}^{-2x},x>0}\\{0,x≤0}\end{array}\right.$,fY(y)=$\left\{\begin{array}{l}{3{e}^{-3y},y>0}\\{0,y≤0}\end{array}\right.$,求E(XY)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x∈Z|x2-2x-3≤0},B={0,1},則∁AB=( 。
A.{-3,-2,-1}B.{-1,2,3}C.{-1,0,1,2,3}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,點D、E在線段AC上,且AD=DE=EC=1,PD=PC=2,點F在線段AB上,且EF∥BC.
(1)證明:AB⊥平面PFE;
(2)若BC=$\sqrt{3}$,求四棱錐P-DFBC的體積.

查看答案和解析>>

同步練習(xí)冊答案