16.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,點D、E在線段AC上,且AD=DE=EC=1,PD=PC=2,點F在線段AB上,且EF∥BC.
(1)證明:AB⊥平面PFE;
(2)若BC=$\sqrt{3}$,求四棱錐P-DFBC的體積.

分析 (1)由已知可得△PDE≌△PCE,得PE⊥DC,又平面PAC⊥平面ABC,可得PE⊥平面ABC,則PE⊥AB,再由AB⊥BC,EF∥BC,結合線面垂直的判定可得AB⊥平面PEF;
(2)求解直角三角形可得三角形ABC的面積,再由比例關系求得四邊形BCEF的面積及三角形DEF的面積,可得四邊形DFBC的面積,代入棱錐體積公式求得
四棱錐P-DFBC的體積.

解答 (1)證明:在△PDE與△PCE中,
∵PD=PC,DE=EC,PE=PE,∴△PDE≌△PCE,
則PE⊥DC,∵平面PAC⊥平面ABC,
且平面PAC∩平面ABC=AC,
∴PE⊥平面ABC,則PE⊥AB,
∵AB⊥BC,EF∥BC,∴AB⊥EF,又PE∩EF=E,
∴AB⊥平面PEF;
(2)解:∵AC=3,BC=$\sqrt{3}$,且∠ABC=$\frac{π}{2}$,
∴$AB=\sqrt{{3}^{2}-(\sqrt{3})^{2}}=\sqrt{6}$,
∴${S}_{△ABC}=\frac{1}{2}×\sqrt{6}×\sqrt{3}=\frac{3\sqrt{2}}{2}$,
∵AE:AC=2:3,∴S△AEF:S△ABC=4:9,
則${S}_{△AEF}=\frac{2\sqrt{2}}{3}$,∴${S}_{BCEF}=\frac{3\sqrt{2}}{2}-\frac{2\sqrt{2}}{3}=\frac{5\sqrt{2}}{6}$,
${S}_{△DEF}=\frac{1}{2}{S}_{△AFE}=\frac{\sqrt{2}}{6}$,
∴${S}_{DFBC}=\frac{5\sqrt{2}}{6}+\frac{\sqrt{2}}{6}=\sqrt{2}$.
∴${V}_{P-DFBC}=\frac{1}{3}×\sqrt{2}×\sqrt{3}=\frac{\sqrt{6}}{3}$.

點評 本題考查直線與平面垂直的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知奇函數(shù)f(x)是定義在R上的連續(xù)函數(shù),滿足f(2)=$\frac{5}{3}$,且f(x)在(0,+∞)上的導函數(shù)f'(x)<x2,則不等式f(x)>$\frac{{{x^3}-3}}{3}$的解集為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.小明在解決三視圖還原問題時,錯把圖一的三視圖看成圖二的三視圖,假設圖一所對應幾何體中最大的面積為S1,圖二所對應幾何體中最大面的面積為S2,三視圖中所有三角形均為全等的等腰直角三角形,則$\frac{{S}_{1}}{{S}_{2}}$=( 。
A.1B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知角θ的終邊過點(2sin2$\frac{π}{8}$-1,a),若sinθ=2$\sqrt{3}$sin$\frac{13π}{12}$cos$\frac{π}{12}$,則實數(shù)a等于( 。
A.-$\sqrt{6}$B.-$\frac{\sqrt{6}}{2}$C.±$\sqrt{6}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設M,N是直線x+y-2=0上的兩點,若M(1,1),且|MN|=$\sqrt{2}$,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某儀器廠從新生產(chǎn)的一批零件中隨機抽取40個檢測,如圖是根據(jù)抽樣檢測后零件的質量(單位:克)繪制的頻率分布直方圖,樣本數(shù)據(jù)分8組,分別為[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],則樣本的中位數(shù)在( 。
A.第3組B.第4組C.第5組D.第6組

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0,2$\sqrt{2}$)是拋物線C上一點,圓M與y軸相切且與線段MF相交于點A,若$\frac{|MA|}{|AF|}$=2,則p等于( 。
A.1B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)f(x)=8lnx+15x-x2,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項和Sn最大時,n=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

同步練習冊答案