9.已知sinα=$\frac{2}{3}$,則sin(2α-$\frac{π}{2}$)=( 。
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

分析 利用誘導(dǎo)公式、二倍角的余弦公式,求得sin(2α-$\frac{π}{2}$)的值.

解答 解:∵sinα=$\frac{2}{3}$,則sin(2α-$\frac{π}{2}$)=-cos2α=-(1-2sin2α)=-1+2•$\frac{4}{9}$=-$\frac{1}{9}$,
故選:B.

點評 本題主要考查誘導(dǎo)公式、二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別是a,b,c,已知(b-2a)•cosC+c•cosB=0
(1)求角C;
(2)若$c=2,{S_{△ABC}}=\sqrt{3}$,求邊長a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于函數(shù)f(x)=$\frac{x-1}{x+1}$,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*,且n≥2),令集合M={x|f2036(x)=x,x∈R},則集合M為( 。
A.空集B.實數(shù)集C.單元素集D.二元素集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0對于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$]B.(-∞,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=|x+1|-2|x-1|,則不等式f(x)>1的解集為( 。
A.($\frac{2}{3}$,2)B.($\frac{1}{3}$,2)C.($\frac{2}{3}$,3)D.($\frac{1}{3}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}的前n項和為Sn=4n2-n+2,則該數(shù)列的通項公式為( 。
A.an=8n+5(n∈N*B.an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$
C.an=8n+5(n≥2)D.an=8n+5(n≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個焦點為F,該橢圓上有一點A,滿足△OAF是等邊三角形(O為坐標(biāo)原點),則橢圓的離心率是( 。
A.$\sqrt{3}-1$B.$2-\sqrt{3}$C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知正方形ABCD的面積為8,沿對角線AC把△ACD折起,則三棱錐D-ABC的外接圓的表面積等于16π.

查看答案和解析>>

同步練習(xí)冊答案