16.已知函數(shù)f(x)=x2-2(a-1)x+2在區(qū)間(-∞,5]上為減函數(shù),則實(shí)數(shù)a的取值范圍為[6,+∞).

分析 由函數(shù)f(x)=x2-2(a-1)x+2的解析式,根據(jù)二次函數(shù)的性質(zhì),判斷出其圖象是開(kāi)口方向朝上,以x=a-1為對(duì)稱軸的拋物線,此時(shí)在對(duì)稱軸左側(cè)的區(qū)間為函數(shù)的遞減區(qū)間,由此可構(gòu)造一個(gè)關(guān)于a的不等式,解不等式即可得到實(shí)數(shù)a的取值范圍.

解答 解:函數(shù)f(x)=x2-2(a-1)x+2的圖象是開(kāi)口方向朝上,
以x=a-1為對(duì)稱軸的拋物線,
若函數(shù)f(x)=x2-2(a-1)x+2在區(qū)間(-∞,5]上是減函數(shù),
則a-1≥5,
解得a≥6.
故答案為:[6,+∞).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),及二次函數(shù)的性質(zhì),其中根據(jù)已知中函數(shù)的解析式,分析出函數(shù)的圖象形狀,進(jìn)而分析函數(shù)的單調(diào)性,是解答此類(lèi)問(wèn)題最常用的辦法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若${x^{10}}-{x^5}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{10}}{({x-1})^{10}}$,則a5=251.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=lnx+2x-6的零點(diǎn)位于區(qū)間(m-1,m)(m∈Z)內(nèi),則${27}^{\frac{1}{m}}$+log3m=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,線段AB在平面α內(nèi),線段BD⊥AB,線段AC⊥α,且AB=$\frac{7}{2}$,AC=BD=12,CD=$\frac{25}{2}$,求線段BD與平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足a1=b1=1,b2-a3=2b3,a3-2b2=-1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式
(2)設(shè)cn=an+bn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:
時(shí)間第4天第32天第60天第90天
價(jià)格(千元)2330227
(Ⅰ)寫(xiě)出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天,x∈N*);
(Ⅱ)銷(xiāo)售量g(x)與時(shí)間x的函數(shù)關(guān)系式為$g(x)=-\frac{1}{3}x+\frac{109}{3}({1≤x≤100,x∈{N^*}})$,則該產(chǎn)品投放市場(chǎng)第幾天的銷(xiāo)售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某地區(qū)教學(xué)考試的成績(jī)X~N(100,100),成績(jī)X位于區(qū)間(110,120]的概率是( 。
參考數(shù)據(jù)
P(μ-σ<X≤μ+σ)=0.6826
P(μ-2σ<X≤μ+2σ)=0.9544
P(μ-3σ<X≤μ+3σ)=0.9974.
A.0.6826B.0.9544C.0.2718D.0.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}滿足a1=2,a3=8,則數(shù)列{an}的公差為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.把2名新生分到甲、乙、丙、丁四個(gè)班,甲班必須且只能分配1名新生,則不同的分配方法有(  )
A.3種B.4種C.6種D.8種

查看答案和解析>>

同步練習(xí)冊(cè)答案