8.若橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{6}$=1的焦距等于2,則m的值為( 。
A.10B.7C.10或4D.7或5

分析 對焦點(diǎn)分類討論,利用a,b,c的關(guān)系即可得出.

解答 解:當(dāng)焦點(diǎn)在x軸時(shí),1=$\sqrt{m-6}$,解得m=7.
當(dāng)焦點(diǎn)在y軸時(shí),1=$\sqrt{6-m}$,解得m=5.
綜上可得:m=7或5.
故選:D.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的長度是(  )
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線L經(jīng)過點(diǎn)P(1,1),傾斜角α=$\frac{π}{6}$.
(1)寫出直線L的參數(shù)方程;
(2)設(shè)L與圓x2+y2=4相交于A、B兩點(diǎn),求P點(diǎn)到A、B兩點(diǎn)的距離之積|PA||PB|和距離之和|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x∈R|x2-2x-3<0},B={x|x∈R|-1<x<m},若x∈A是x∈B的充分不必要條件,則實(shí)數(shù)m的取值范圍為( 。
A.(3,+∞)B.(-1,3)C.[3,+∞)D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={0,1,2},A∩B={0,1},A∪B={0,1,2,3},則B=( 。
A.{3}B.{0,1}C.{1,2,3}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{6}$=1(a>0)的離心率是$\frac{{\sqrt{6}}}{6}$,則實(shí)數(shù)a為( 。
A.$\frac{{6\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\frac{{6\sqrt{5}}}{5}$或$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22℃.”現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù),單位:℃):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.2.
則肯定進(jìn)入夏季的地區(qū)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若0<x<y<1,則( 。
A.3y<3xB.logx3<logy3C.log4x>log4yD.($\frac{1}{4}$)x>($\frac{1}{4}$)y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.
(1)請估算參加這次知識競賽的高一年級學(xué)生成績的眾數(shù)和高二年級學(xué)生成績的平均值;
(2)完成下面2×2列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?
成績小于60分人數(shù)成績不小于60分人數(shù)合計(jì)
高一
高二
合計(jì)
附:臨界值表及參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案