7.若命題“?x∈(0,+∞),x+$\frac{1}{x}$≥m”是假命題,則實數(shù)m的取值范圍是(2,+∞).

分析 全稱命題改為特稱命題,根據(jù)不等式的性質求出m的范圍即可.

解答 解:由題意得:命題““?x∈(0,+∞),x+$\frac{1}{x}$<m”是真命題,
∵x∈(0,+∞),x+$\frac{1}{x}$≥2,
故m∈(2,+∞),
故答案為:(2,+∞).

點評 本題考查了全稱命題和特稱命題,考查不等式的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.若2x=10,則x-log25的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某學校食堂推出兩款優(yōu)惠套餐,甲、乙、丙三位同學選擇同一款餐的概率為( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,則$cos({\frac{π}{3}+2α})$=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.向圖所示的邊長為1的正方形區(qū)域內任投一粒豆子,則該豆子落入陰影部分的概率為ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,曲線C由左半橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,x≤0)和圓N:(x-2)2+y2=5在y軸右側的部分連接而成,A,B是M與N的公共點,點P,Q(均異于點A,B)分別是M,N上的動點.
(1)若|PQ|的最大值為4+$\sqrt{5}$,求半橢圓M的方程;
(2)若直線PQ過點A,且$\overrightarrow{AQ}$+$\overrightarrow{AP}$=$\overrightarrow{0}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半橢圓M的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知sinθ+2cosθ=0,則$\frac{1+sin2θ}{{{{cos}^2}θ}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知正項等比數(shù)列{an}中,a1=1,其前n項和為Sn(n∈N*),且$\frac{1}{a_1}-\frac{1}{a_2}=\frac{2}{a_3}$,則S4=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在四棱錐P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA=$\sqrt{3}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

同步練習冊答案