8.若函數(shù)$f(x)=|{{{log}_a}x}|-{2^{-x}}({a>0,a≠1})$的兩個零點是m,n,則( 。
A.mn=1B.mn>1C.mn<1D.以上都不對

分析 結(jié)合圖象得出|logam|和|logan|的大小關(guān)系,利用對數(shù)的運算性質(zhì)化簡即可得出答案.

解答 解:令f(x)=0得|logax|=$\frac{1}{{2}^{x}}$,
則y=|logax|與y=$\frac{1}{{2}^{x}}$的圖象有2個交點,
不妨設(shè)m<n,a>1,
作出兩個函數(shù)的圖象如圖:

∴$\frac{1}{{2}^{m}}$>$\frac{1}{{2}^{n}}$,即-logam>logan,
∴l(xiāng)ogam+logan<0,即loga(mn)<0,
∴mn<1.
故選C.

點評 本題考查了基本初等函數(shù)的圖象與性質(zhì),對數(shù)的運算性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一長方體,其長、寬、高分別為3,1,$\sqrt{6}$,則該長方體的外接球的表面積是( 。
A.16πB.64πC.$\frac{32π}{3}$D.$\frac{252π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有-段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需9日相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x∈R,ax2+2x+3>0.若命題p為假命題,則實數(shù)a的取值范圍是(  )
A.{a|a<$\frac{1}{3}$}B.{a|0<a≤$\frac{1}{3}$}C.{a|a≤$\frac{1}{3}$}D.{a|a≥$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合$A=\left\{{y\left|{y={x^{\frac{1}{3}}}}\right.}\right\},B=\left\{{x\left|{y=ln({x-1})}\right.}\right\}$,則A∩B=( 。
A.[1,+∞)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在區(qū)間[0,4]上隨機取一個數(shù)x,則事件“$-1≤{log_{\frac{1}{2}}}({x+\frac{1}{2}})≤1$”發(fā)生的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足xf'(x)+f(x)>x,則不等式$({x-4})f({x-4})-4f(4)<\frac{x^2}{2}-4x$的解集為(-∞,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.實數(shù)a,b滿足0<a≤2,b≥1.若b≤a2,則$\frac{a}$的取值范圍是$[\frac{1}{2},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓C:(x-1)2+(y+2)2=5,直線l1:2x-3y+6=0,則與l1平行且過圓C圓心的直線l的方程為2x-3y-8=0.

查看答案和解析>>

同步練習(xí)冊答案