8.1+3+32+…+3101被4除所得的余數(shù)為( 。
A.0B.1C.2D.3

分析 利用等比數(shù)列的求和公式、二項式定理即可得出.

解答 解:1+3+32+…+3101=$\frac{{3}^{102}-1}{3-1}$=$\frac{1}{2}×(4-1)^{102}$-$\frac{1}{2}$=$\frac{1}{2}({4}^{102}-{4}^{101}+…-{4}^{3}+{4}^{2}-4+1)$-$\frac{1}{2}$
=2(4101-4100+…-42)+4+2,
1+3+32+…+3101被4除所得的余數(shù)為2.
故選:C.

點評 本題考查了等比數(shù)列的求和公式、二項式定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$夾角為60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{3}$,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.$\sqrt{7}$B.2$\sqrt{7}$C.6$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}的首項a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列.若${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a>b>0,則下列不等式成立的是( 。
A.|b-a|≥1B.2a<2bC.lg$\frac{a}$<0D.0<$\frac{a}$<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知離心率為$\frac{1}{2}$ 的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點為A,右焦點為F,且|AF|=3.
(1)求橢圓C的方程;
(2)若過點F的直線交橢圓于B、C兩點,設(shè)直線AB和AC分別與直線x=4交于點M,N,問x軸上是否存在定點P使得MP⊥NP?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面四個命題正確的是( 。
A.第一象限角必是銳角B.小于90°的角是銳角
C.若α>β,則sinα>sinβD.銳角必是第一象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P(4,0)是圓x2+y2=36內(nèi)一點,A,B是圓上兩動點,且滿足∠APB=90°,則矩形APBQ的頂點Q的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sinx+$\sqrt{3}$cosx(x∈[0,$\frac{π}{2}}$])的單調(diào)遞增區(qū)間是[0,$\frac{π}{6}$],最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|0<x<2},B={x|-1<x<1},則(∁RA)∩B=( 。
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

同步練習(xí)冊答案