分析 (1)根據(jù)基本不等式即可求出函數(shù)的最值;
(2)根據(jù)對稱軸求出a=-1,分別求出f(x)max=1+c,g(x)min=2,即1+c≥2,解得即;
(3)把f(x+t)≤3x轉(zhuǎn)化為(x+t)2+2(x+t)≤3x,即h(x)=x2+(2t-1)x+t2+2t,在x∈[1,m]恒小于0問題,考查h(x)的圖象與性質(zhì),求出m的取值范圍.
解答 解:(1)∵x>0,∴$\frac{1}{x}>0$,
∴$x+\frac{1}{x}≥2$,當(dāng)且僅當(dāng)$x=\frac{1}{x}$,即x=1時(shí)“=”成立,即g(x)min=2,此時(shí)x=1.
(2)f(x)的對稱軸為x=1,
∴a=-1,
∴f(x)=-x2+2x+c,g(x)-f(x)=0至少有一個(gè)實(shí)根,
∴g(x)=f(x)至少有一個(gè)實(shí)根,
即g(x)與f(x)的圖象在(0,+∞)上至少有一個(gè)交點(diǎn),f(x)=-(x-1)2+1+c,
∴f(x)max=1+c,g(x)min=2,
∴1+c≥2,∴c≥1,
∴c的取值范圍為[1,+∞).
(3)F(x)=x2-2x-c+4x+c=x2+2x,
∴F(x+t)=(x+t)2+2(x+t),
由已知存在實(shí)數(shù)t,對任意x∈[1,m],使(x+t)2+2(x+t)≤3x恒成立.
∴x2+(2t-1)x+t2+2t≤0.
令h(x)=x2+(2t-1)x+t2+2t,
∴$\left\{\begin{array}{l}h(1)≤0\\ h(m)≤0\end{array}\right.$,即$\left\{\begin{array}{l}{t^2}+4t≤0\\{t^2}+(2m+2)t+{m^2}-m≤0\end{array}\right.$,
轉(zhuǎn)化為存在t∈[-4,0],使t2+(2m+2)t+m2-m≤0成立.
令G(t)=t2+(2m+2)t+m2-m,
∴G(t)的對稱軸為t=-(m+1),
∵m>1,
∴-(m+1)<-2.
①當(dāng)-4<-(m+1)<-2,即1<m<3時(shí),
$G{(t)_{min}}=G(-m-1)={(-m-1)^2}+(2m+2)(-m-1)+{m^2}-m=-3m-1$,
∴$\left\{\begin{array}{l}1<m<3\\-3m-1≤0\end{array}\right.$,
∴1<m<3.
②當(dāng)-(m+1)≤-4,即m≥3時(shí),
$G{(t)_{min}}=G(-4)=16-8m-8+{m^2}-m={m^2}-9m+8$,
∴$\left\{\begin{array}{l}m≥3\\{m^2}-9m+8≤0\end{array}\right.$,
∴$\left\{\begin{array}{l}m≥3\\ 1≤m≤8\end{array}\right.$,
∴3≤m≤8.
綜上,實(shí)數(shù)m的取值范圍為(1,8].
點(diǎn)評 本題考查了二次函數(shù)在閉區(qū)間上的最值問題的應(yīng)用,解題時(shí)應(yīng)討論對稱軸在區(qū)間內(nèi)還是在區(qū)間左側(cè),還是區(qū)間右側(cè),從而確定函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n}{3(2n+3)}$ | B. | $\frac{2n}{3(2n+3)}$ | C. | $\frac{n-1}{3(2n+1)}$ | D. | $\frac{n}{2n+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $240\sqrt{3}$米 | B. | $180(\sqrt{2}-1)$米 | C. | $120(\sqrt{3}-1)$米 | D. | $30(\sqrt{3}+1)$米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com