18.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1}{2}-\frac{1}{2}$i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)$(\frac{1}{2},-\frac{1}{2})$位于第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈N|-1<x<5},B={x|-x2+5x+6>0},則A∩B=( 。
A.{-1,0,1,3}B.{-1,0,1,2}C.{-1,0,1}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函數(shù)g(x)=f(x)-k有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是$(\frac{5}{9},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)x、y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,則z=-2x+3y的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)(1,2)且與直線y=2x+1垂直的直線的方程為( 。
A.x+2y-3=0B.2x-y+4=0C.x+2y+3=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PA=1,求點(diǎn)E到平面PFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且|AF|=2|BF|,則直線AB的斜率為(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{2}$或$-2\sqrt{2}$D.$2\sqrt{3}或-2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過拋物線y2=4x的焦點(diǎn)F且斜率為$2\sqrt{2}$的直線交拋物線于A,B兩點(diǎn)(xA>xB),則$\frac{{|{AF}|}}{{|{BF}|}}$=( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E為AC的中點(diǎn),側(cè)棱CC1=2.
(1)求證:A1C⊥平面C1EB;
(2)求直線CC1與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案