17.設(shè)函數(shù)f(x)=lnx-x2+x.
(I)求f(x)的單調(diào)區(qū)間;
(II)求f(x)在區(qū)間[$\frac{1}{2}$,e]上的最大值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的單調(diào)區(qū)間,得到函數(shù)的最大值和最小值即可.

解答 解:(I)因?yàn)閒(x)=lnx-x2+x其中x>0,
所以f'(x)=$\frac{1}{x}$-2x+1=$\frac{(x-1)(2x+1)}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
所以f(x)的增區(qū)間為(0,1),減區(qū)間為(1,+∞).
(II)由(I)f(x)在[$\frac{1}{2}$,1]單調(diào)遞增,在[1,e]上單調(diào)遞減,
∴f(x)max=f(1)=0.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}的前n項(xiàng)的和為Sn,且a6與a2012是方程x2-20x+36=0的兩根,則$\frac{{S}_{2017}}{2017}$+a1009=( 。
A.10B.15C.20D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a=log23,b=log47,$c={0.3^{-\frac{3}{2}}}$,則a,b,c的大小關(guān)系為( 。
A.b>a>cB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量x的平均數(shù)與中位數(shù)的大。
(Ⅱ)根據(jù)直方圖估計利潤T不少于57萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.方程x2=xsinx+cosx的實(shí)數(shù)解個數(shù)是( 。
A.3B.0C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列求導(dǎo)正確的是( 。
A.(3x2-2)'=3xB.(log2x)'=$\frac{1}{x•ln2}$C.(cosx)'=sinxD.($\frac{1}{lnx}$)'=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)隨機(jī)變量X~B(2,p),隨機(jī)變量Y~B(3,p),若$p(X≥1)=\frac{5}{9}$,則E(3Y+1)( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“?x∈R,x2+x+1<0”的否定為(  )
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為響應(yīng)國建“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全國征召《扶貧政策》義務(wù)宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示
(1)求圖中x的值
(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y,求Y的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案