16.已知△ABC的面積為$3-\sqrt{3},B={60°}$,又最大角與最小角的正切值恰好為方程 ${x^2}-3x+2=\sqrt{3}(x-1)$的根,求△ABC的另外兩個角和三條邊.

分析 假設(shè) A 角最小,C 角最大,解一元二次方程可得兩根,由已知可求tanA,tanC,進而可求A,C的值,利用三角形面積公式可求 $ac=4(\sqrt{3}-1)$,利用正弦定理可得$\sqrt{2}a=(\sqrt{6}-\sqrt{2})c$,聯(lián)立解得a,c的值,進而利用正弦定理可求b的值.

解答 解:假設(shè) A 角最小,C 角最大,由方程 ${x}^{2}-3x+2=\sqrt{3}(x-1)$ 解得兩根${x}_{1}=1,{x}_{2}=\sqrt{3}+2$,
則 tanA=1,$tanC=\sqrt{3}+2$,
所以A=45°,C=75°.
又因為 $S=3-\sqrt{3}=\frac{1}{2}acsinB=\frac{\sqrt{3}}{4}ac$,即 $ac=4(\sqrt{3}-1)$.
將 A=45°,C=75° 代入 $\frac{a}{sinA}=\frac{c}{sinC}$,得 $\sqrt{2}a=(\sqrt{6}-\sqrt{2})c$.
由 $\left\{\begin{array}{l}ac=4(\sqrt{3}-1)\\ \sqrt{2}a=(\sqrt{6}-\sqrt{2})c\end{array}\right.$,得$\left\{\begin{array}{l}a=2(\sqrt{3}-1)\\ c=2.\end{array}\right.$,
又由正弦定理得:$b=\frac{asinB}{sinA}=3\sqrt{2}-\sqrt{6}$,
所以△ABC 另外兩角為 45° 和 75°,
可得三邊分別為 $2(\sqrt{3}-1)$,$3\sqrt{2}-\sqrt{6}$ 和 2.

點評 本題主要考查了一元二次方程的解法,三角形面積公式,正弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知在四面體ABCD中,AB,AC,AD兩兩互相垂直,給出下列兩個命題:
①$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$•$\overrightarrow{BD}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$,
②($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$)2=$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+$\overrightarrow{AD}$2
則下列關(guān)于以上兩個命題的真假性判斷正確的為( 。
A.①真、②真B.①真、②假C.①假、②假D.①假、②真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,若輸入p=5,q=6,則輸出a的值為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π)且$sin(α+β)=\frac{3}{5}$,$cosβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.把98(5)轉(zhuǎn)化為九進制數(shù)為58(9)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.曲線C1的極坐標方程為ρ=R(R>0),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}α}\\{y=si{n}^{2}α}\end{array}\right.$(α為參數(shù)),若C1與C2有公共點,則R的取值范圍是( 。
A.[2,+∞)B.[$\sqrt{2}$,+∞)C.[2,$\sqrt{10}$]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知某產(chǎn)品的廣告費用x與銷售額y之間有如下的對應數(shù)據(jù):
x(萬元) 2 4 5 6 8
y(萬元) 30 40 60 50 70
(1)y與x是否具有線性相關(guān)關(guān)系?若有,求出y對x的線性回歸方程;
(2)據(jù)此估計廣告費用為11萬元時銷售額的值.
(參考公式:$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知點M的直角坐標為 ( $\sqrt{3}$,-1)則它的極坐標可以是(  )
A.( 2,$\frac{2π}{3}$  )B.( 2,$\frac{5π}{6}$ )C.(2,$\frac{5π}{3}$)D.( 2,$\frac{11π}{6}$ )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=x2+t,則f'(0)=0.

查看答案和解析>>

同步練習冊答案