1.曲線C1的極坐標(biāo)方程為ρ=R(R>0),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}α}\\{y=si{n}^{2}α}\end{array}\right.$(α為參數(shù)),若C1與C2有公共點,則R的取值范圍是( 。
A.[2,+∞)B.[$\sqrt{2}$,+∞)C.[2,$\sqrt{10}$]D.[2,3]

分析 求出曲線C1的直角坐標(biāo)方程為x2+y2=R2(R>0),曲線C2的直角坐標(biāo)方程為x-y-2=0,由C1與C2有公共點,知圓心C1(0,0)到直線x-y-2=0的距離d≤R,由此能求出R的取值范圍.

解答 解:∵曲線C1的極坐標(biāo)方程為ρ=R(R>0),
∴曲線C1的直角坐標(biāo)方程為x2+y2=R2(R>0),
∵曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}α}\\{y=si{n}^{2}α}\end{array}\right.$(α為參數(shù)),
∴曲線C2的直角坐標(biāo)方程為x-y-2=0,
C1是以C1(0,0)為圓心,R為半徑的圓,
∵C1與C2有公共點,
∴圓心C1(0,0)到直線x-y-2=0的距離:
d=$\frac{|-2|}{\sqrt{2}}$≤R,解得R$≥\sqrt{2}$.
∴R的取值范圍是[$\sqrt{2}$,+∞).
故選:B.

點評 本題考查圓的半徑的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意直角坐標(biāo)和極坐標(biāo)互化公式、點到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以(1,-1)為圓心且與直線x+2=0相切的圓的方程為( 。
A.(x-1)2+(y+1)2=9B.(x-1)2+(y+1)2=3C.(x+1)2+(y-1)2=9D.(x+1)2+(y-1)2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知曲線C的極坐標(biāo)方程是ρ=2sinθ,設(shè)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-3t+2}\\{y=4t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程和直線l的參數(shù)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l和曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了了解高三學(xué)生的數(shù)學(xué)成績,抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出其頻率分布直方圖,如圖.已知從左到右各長方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績在[80,100)之間的學(xué)生人數(shù)是( 。
A.32B.27C.24D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的面積為$3-\sqrt{3},B={60°}$,又最大角與最小角的正切值恰好為方程 ${x^2}-3x+2=\sqrt{3}(x-1)$的根,求△ABC的另外兩個角和三條邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx+bx2的圖象在點(1,f(1))處的切線方程為x-y-1=0,g(x)=2af(x+t),t∈R且t≤2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求證:g(x)<ex+f(x+t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.平面上若一個三角形的周長為L,其內(nèi)切圓的半徑為R,則該三角形的面積S=$\frac{1}{2}LR$,類比到空間,若一個四面體的表面積為S,其內(nèi)切球的半徑為R,則該四面體的體積V=$\frac{1}{3}$SR.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A是拋物線x2=4y的對稱軸與準(zhǔn)線的交點,點F為拋物線的焦點,P在拋物線上且滿足|PA|=m|PF|,當(dāng)m取最大值時|PA|的值為( 。
A.1B.$\sqrt{5}$C.$\sqrt{6}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}中,an=n,前n項和為Sn,則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{100}}$=$\frac{200}{101}$.

查看答案和解析>>

同步練習(xí)冊答案