13.設(shè)函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

分析 由x•f(x)<0對x>0或x<0進行討論,把不等式x•f(x)<0轉(zhuǎn)化為f(x)>0或f(x)<0的問題解決,根據(jù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,把函數(shù)值不等式轉(zhuǎn)化為自變量不等式,求得結(jié)果.

解答 解:∵f(x)是R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),
∴在(-∞,0)內(nèi)f(x)也是增函數(shù),
又∵f(-3)=0,
∴f(3)=0,
∴當(dāng)x∈(-∞,-3)∪(0,3)時,f(x)<0;當(dāng)x∈(-3,0)∪(3,+∞)時,f(x)>0;
∴x•f(x)<0的解集是(-3,0)∪(0,3).
故選D.

點評 考查函數(shù)的奇偶性和單調(diào)性解不等式,體現(xiàn)了分類討論的思想方法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=ax2-2x+1在[1,10]上單調(diào)遞減,則實數(shù)a的取值范圍為$({-∞,\frac{1}{10}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,虛線部分是平面直角坐標(biāo)系四個象限的角平分線,實線部分是函數(shù)y=f(x)的部分圖象,則f(x)可能是( 。
A.x2sinxB.xsinxC.x2cosxD.xcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間($\frac{1}{2}$,3)上既有極大值又有極小值,則實數(shù)a的取值范圍是(  )
A.(2,+∞)B.[2,+∞)C.(2,$\frac{5}{2}$)D.(2,$\frac{10}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列.
(1)已知數(shù)列{an}為調(diào)和數(shù)列.且滿足a1=1,a2=$\frac{1}{2}$.求{an}的通項公式;
(2)若數(shù)列{(2n+1)bn}為調(diào)和數(shù)列,且b1=$\frac{1}{3}$,b2=$\frac{1}{15}$,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$在區(qū)間(m,2m+1)上是單調(diào)遞增函數(shù),則實數(shù)m的取值范圍為(  )
A.(-1,0]B.(-1,0)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程x+m=-$\sqrt{4-{x}^{2}}$有且僅有一解,則實數(shù)m的取值范圍是{-2$\sqrt{2}$}∪(-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若cosBcosC-sinBsinC≥0,則這個三角形的形狀一定不會是銳角三角形(填“銳角”,或“直角”,或“鈍角”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)△AnBnCn的三邊長分別是an,bn,cn,△AnBnCn的面積為Sn,n∈N*,若b1>c1,b1+c1=2a1,an+1=an,bn+1=$\frac{{{a_n}+{c_n}}}{2},{c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,則( 。
A.{Sn}為遞減數(shù)列B.{Sn}為遞增數(shù)列
C.{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列D.{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

同步練習(xí)冊答案