7.若$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{1}{2}$,則 tan2α( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

分析 由$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,可得tanα的值,再利用二倍角的正切公式,即可求得結(jié)論.

解答 解:∵$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,
∴2(sinα+cosα)=sinα-cosα,
∴sinα=-3cosα,即tanα=-3.
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{-6}{1-9}=\frac{3}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查同角三角函數(shù)的關(guān)系,考查二倍角的正切公式,正確運(yùn)用公式是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2016年春節(jié),“搶紅包”稱為社會(huì)熱議的話題之一,某機(jī)構(gòu)對(duì)春節(jié)期間用戶利用手機(jī)“搶紅包”的情況進(jìn)行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為“關(guān)注點(diǎn)高”,否則為“關(guān)注點(diǎn)低”,調(diào)查情況如表所示:
  關(guān)注點(diǎn)高關(guān)注點(diǎn)低  總計(jì)
 男性用戶 x 5 
 女性用戶 7 y 8
 總計(jì) 10 16 
(Ⅰ)填寫如表中x、y的值并判斷是否有95%以上的把握認(rèn)為性別與關(guān)注點(diǎn)高低有關(guān)?
(Ⅱ)現(xiàn)要從上述男性用戶中隨機(jī)選出3名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中搶紅包總次數(shù)超過10次的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).
下面的臨界值表供參考:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:
(1)(1+i)(1-i)+(1+2i)2
(2)$\frac{(3-2i)^{2}-3(1-i)}{2+i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司做了用戶對(duì)其產(chǎn)品滿意度的問卷調(diào)查,隨機(jī)抽取20名男女用戶,匯總數(shù)據(jù)如表
不滿意滿意合計(jì)
145
合計(jì)20
由于部分?jǐn)?shù)據(jù)丟失,根據(jù)原始資料只查得:從滿意的人數(shù)中任意抽取2人,都是男生的概率是$\frac{2}{7}$.
(Ⅰ)根據(jù)條件完成以上2×2列聯(lián)表,并據(jù)此判斷有多大以上的把握認(rèn)為“用戶滿意度”與性別有關(guān).
(Ⅱ)從以上男性用戶中抽取2人,女性用戶中抽取1人,其中滿意的人數(shù)為X,求X的分布列和期望E(X).
附:χΧ
2=$\frac{{n{{({ad-bc})}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上的奇函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{g(x),x>0}\end{array}\right.$,則f(1)=-1;不等式f(f(x))≤7的解集為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2sin2x+2sinx•cosx的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某媒體對(duì)“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān)?
贊同反對(duì)合計(jì)
5611
11314
合計(jì)16925
(2)從贊同“男女延遲退休”16人中選出3人進(jìn)行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計(jì)整個(gè)地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學(xué)期望.
附:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知函數(shù)f(x)=x2+(a+1)x+b
(1)若函數(shù)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)函數(shù)f(x)的圖象過點(diǎn)(3,3)且滿足f(x)≥x恒成立,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|-1<x<1},N={x|x2<4,x∈Z},則(  )
A.M∩N={0}B.N⊆MC.M⊆ND.M∪N=N

查看答案和解析>>

同步練習(xí)冊(cè)答案