2.已知函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函數(shù),直線y=$\sqrt{2}$與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的距離為$\frac{π}{2}$,則( 。
A.f(x)在(0,$\frac{π}{4}$)上單調(diào)遞減B.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調(diào)遞減
C.f(x)在(0,$\frac{π}{4}$)上單調(diào)遞增D.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調(diào)遞增

分析 利用輔助角化簡(jiǎn)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ$+\frac{π}{4}$)是奇函數(shù),可得φ$+\frac{π}{4}$=kπ,解出φ,直線y=$\sqrt{2}$與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的距離為$\frac{π}{2}$,可得周期T=$\frac{π}{2}$,求出ω,可得f(x)的解析式,從而判斷各選項(xiàng)即可.

解答 解:化簡(jiǎn)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ$+\frac{π}{4}$)
∵f(x)是奇函數(shù),
∴φ$+\frac{π}{4}$=kπ,k∈Z.即φ=k$π-\frac{π}{4}$.
∵0<φ<π
∴φ=$\frac{3π}{4}$.
又∵直線y=$\sqrt{2}$與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的距離為$\frac{π}{2}$,
可得周期T=$\frac{π}{2}$,即$\frac{2π}{ω}=\frac{π}{2}$,
∴ω=4.
∴f(x)的解析式為f(x)=$\sqrt{2}$sin(4x+$\frac{3π}{4}$),
令2kπ$-\frac{π}{2}≤$4x+$\frac{3π}{4}$$≤\frac{π}{2}$+2kπ,單調(diào)遞增.
可得:$\frac{1}{2}kπ$$-\frac{5π}{16}≤x≤-\frac{π}{16}$+$\frac{1}{2}kπ$,k∈Z.
∴C選項(xiàng)對(duì).D選項(xiàng)不對(duì).
令2kπ+$\frac{π}{2}$≤4x+$\frac{3π}{4}$$≤\frac{3π}{2}$+2kπ,單調(diào)遞減.
可得:$\frac{1}{2}kπ$$-\frac{π}{16}≤x≤\frac{3π}{16}$$+\frac{1}{2}kπ$,k∈Z.
∴A,B選項(xiàng)不對(duì).
故選C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩叶泠玻嵵菔懈鶕?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634
(Ⅰ)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對(duì)象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項(xiàng)舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.用向量法證明以下各題:
(1)三角形三條中線共點(diǎn);
(2)P是△ABC重心的充要條件是$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于(  )
A.$\frac{\sqrt{10}}{5}$B.-$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.-$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某市每年中考都要舉行實(shí)驗(yàn)操作考試和體能測(cè)試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項(xiàng)成績(jī),表中實(shí)驗(yàn)操作考試和體能測(cè)試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這班30人中隨機(jī)抽取一個(gè),實(shí)驗(yàn)操作成績(jī)合格,且體能測(cè)試成績(jī)合格或合格以上的概率是$\frac{1}{6}$.
實(shí)驗(yàn)操作
不合格合格良好優(yōu)秀
體能測(cè)試不合格0111
合格021b
良好1a24
優(yōu)秀1136
(Ⅰ)試確定a,b的值;
(Ⅱ)從30人中任意抽取3人,設(shè)實(shí)驗(yàn)操作考試和體能測(cè)試成績(jī)都是良好或優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{3{x^2}+ax+26}}{x+1}$,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為(-∞,-15].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長(zhǎng)軸長(zhǎng)為6,離心率$e=\frac{{\sqrt{6}}}{3}$,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,若分別過(guò)橢圓E的左右焦點(diǎn)F1,F(xiàn)2的動(dòng)直線l1,l2相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點(diǎn)M、N,使得|PM|+|PN|為定值.存在,求出M、N點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)是定義在R上周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2-x,則$f({-\frac{5}{2}})$=( 。
A.$-\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知α,β為銳角,tan$\frac{α}{2}$=$\frac{1}{3}$,cos(α-β)=-$\frac{4}{5}$.
(1)求sinα;
(2)求2α+β.

查看答案和解析>>

同步練習(xí)冊(cè)答案