19.河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩叶泠玻嵵菔懈鶕?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634
(Ⅰ)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對(duì)象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項(xiàng)舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)由頻數(shù)分布表求出年齡在[35,45)的頻率,從而求出對(duì)應(yīng)的小矩形的高,由此能補(bǔ)全頻率分布直方圖.
(Ⅱ)X的所有可能的取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.

解答 解:(Ⅰ)由頻數(shù)分布表知:
年齡在[35,45)的頻率為:$\frac{15}{50}$=0.3,對(duì)應(yīng)的小矩形有高為$\frac{0.3}{10}$=0.03,
補(bǔ)全頻率分布直方圖如圖所示:

(Ⅱ)X的所有可能的取值為0,1,2,3,
$P({X=0})=\frac{C_4^2}{C_5^2}•\frac{C_6^2}{{C_{10}^2}}$=$\frac{90}{450}=\frac{1}{5}$,
$P({X=1})=\frac{C_4^1}{C_5^2}•\frac{C_6^2}{{C_{10}^2}}+$$\frac{C_4^2}{C_5^2}•\frac{C_4^1C_6^1}{{C_{10}^2}}=\frac{204}{450}=\frac{34}{75}$,
$P({X=2})=\frac{C_4^1}{C_5^2}•\frac{C_4^1C_6^1}{{C_{10}^2}}+$$\frac{C_4^2}{C_5^2}•\frac{C_4^2}{{C_{10}^2}}=\frac{132}{450}=\frac{22}{75}$,
$P({X=3})=\frac{C_4^1}{C_5^2}•\frac{C_4^2}{{C_{10}^2}}$=$\frac{24}{450}=\frac{4}{75}$,
故X的分布列為:

X0123
P$\frac{15}{75}$$\frac{34}{75}$$\frac{22}{75}$$\frac{4}{75}$
所以X的數(shù)學(xué)期望為$E(X)=0×\frac{15}{75}+1×\frac{34}{75}$$+2×\frac{22}{75}+3×\frac{4}{75}=1.2$.

點(diǎn)評(píng) 本題考查考查頻率分布直方圖的應(yīng)用,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來(lái)源則是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率.祖沖之,在世界數(shù)學(xué)史上第一次將圓周率(π)值計(jì)算到小數(shù)點(diǎn)后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項(xiàng)是“31415926”中連續(xù)的三個(gè)數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項(xiàng)是“31415926”中的三個(gè)數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a,b>0)$,過(guò)x軸上點(diǎn)P的直線與雙曲線的右支交于M,N兩點(diǎn)(M在第一象限),直線MO交雙曲線左支于點(diǎn)Q(O為坐標(biāo)原點(diǎn)),連接QN.若∠MPO=60°,∠MNQ=30°,則該雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若復(fù)數(shù)z=1+i,$\overline z$為z的共軛復(fù)數(shù),則z•$\overline z$=(  )
A.0B.2C.$\sqrt{2}$D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若變量x,y滿足條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,則xy的取值范圍是( 。
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)$f(x)=sin\frac{πx}{6}$,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個(gè)不同元素m,n,則f(m)f(n)=0的概率為( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若i為虛數(shù)單位,則$\frac{1+i}{3-i}$-$\frac{i}{3+i}$=( 。
A.$\frac{2-i}{10}$B.$\frac{1+i}{10}$C.$\frac{4+7i}{10}$D.$\frac{4-i}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域?yàn)镽},B={a|3a2+5a-2<0},則A∩B=( 。
A.(0,$\frac{4}{9}$)B.[0,$\frac{1}{3}$)C.(-2,0)D.($\frac{1}{3}$,$\frac{4}{9}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函數(shù),直線y=$\sqrt{2}$與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的距離為$\frac{π}{2}$,則(  )
A.f(x)在(0,$\frac{π}{4}$)上單調(diào)遞減B.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調(diào)遞減
C.f(x)在(0,$\frac{π}{4}$)上單調(diào)遞增D.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案