8.函數(shù)f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

分析 根據(jù)正弦函數(shù)的y=Asin(ωx+φ)的形式的周期公式求函數(shù)的最小正周期即可.

解答 解:函數(shù)f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$),
其最小正周期T=$\frac{2π}{|ω|}=\frac{2π}{\frac{1}{2}}=4π$,
故選:D.

點評 本題考查了三角函數(shù)的y=Asin(ωx+φ)的形式的周期公式的運用.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點.
(1)求證:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在五張牌中有三張K和兩張A,如果不放回地一次抽取兩張牌.記“第2次抽到撲克牌K的概率為x”,“在第一次抽到撲克牌K的條件下,第二次抽到撲克牌K的概率為y”,則實數(shù)x,y依次為(  )
A.$\frac{3}{5}{,^{\;}}\frac{1}{2}$B.$\frac{3}{5}{,^{\;}}\frac{3}{5}$C.$\frac{1}{2}{,^{\;}}\frac{1}{2}$D.$\frac{3}{5}{,^{\;}}\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.下列關于回歸分析的說法正確的是④⑤(填上所有正確說法的序號)
①相關系數(shù)r越小,兩個變量的相關程度越弱;
②殘差平方和越大的模型,擬合效果越好;
③用相關指數(shù)R2來刻畫回歸效果時,R2越小,說明模型的擬合效果越好;
④用最小二乘法求回歸直線方程,是尋求使$\sum_{i=1}^n{{{({y_i}-b{x_i}-a)}^2}}$取最小值時的a,b的值;
⑤在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內,說明選用的模型比較合適,這樣的帶狀區(qū)域的寬度越窄,模型擬合精度越高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.把正奇數(shù)從小到大按以下方式分鐘:(1),(3,5),(7,9,11),(13,15,17,19),…,其中第n組有n個正奇數(shù),若第m組第k個正奇數(shù)是 2015,則m+k=(  )
A.63B.64C.65D.66

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知f(x)=x3-$\frac{9}{2}$x2+6x-a,若對任意的x,f′(x)≥m恒成立,則m的最大值為(  )
A.3B.2C.1D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ex(ax2+bx+1)(其中a,b∈R),函數(shù)f(x)的導函數(shù)為f′(x),且f′(-1)=0.
(Ⅰ)若b=1,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-1,1]上的最小值為0,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{a}{x}$+lnx,g(x)=$\frac{lnx}{x}$,x∈(0,e],a∈R
(Ⅰ)若a=1,求f(x)的單調區(qū)間與極值;
(Ⅱ)求證:在(I)的條件下,f(x)>g(x)+$\frac{1}{2}$;
(Ⅲ)是否存在實數(shù)a,使f(x)的最小值是-1?若存在,求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知高與底面半徑相等的圓錐的體積為$\frac{8π}{3}$,其側面積與球O的表面積相等,則球O的表面積為4$\sqrt{2}$π.

查看答案和解析>>

同步練習冊答案