8.如圖,在三棱柱ABC-A1B1C1中.AA1⊥平面ABC,AA1=AC=2AB=2,BC1⊥A1C.
(1)求證:AB⊥平面A1C;
(2)試探究線段AA1上的點D的位置,使得平面ABC1與平面B1C1D所成的二面角的余弦值為$\frac{\sqrt{2}}{2}$.

分析 (1)AA1⊥平面ABC,可得AA1⊥AC,AA1⊥AB,可得四邊形ACC1A1是正方形.于是A1C⊥AC1,可得A1C⊥平面ABC1,A1C⊥AB,進而得到AB⊥平面A1C.
(2)如圖所示,建立空間直角坐標系,分類討論:①點D取A1點時,平面ABC1與平面B1C1D所成的二面角的平面角為∠CAC1=45°,即可得出結論.
②點D不取A1點時,A(0,0,0),設D(0,0,t),(t∈[0,2)),設平面ABC1的法向量為$\overrightarrow{n}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=0}\end{array}\right.$,可得$\overrightarrow{n}$.設平面DB1C1的法向量為$\overrightarrow{m}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{D{B}_{1}}=0}\\{\overrightarrow{m}•\overrightarrow{{B}_{1}{C}_{1}}=0}\end{array}\right.$,可得$\overrightarrow{m}$.利用$|cos<\overrightarrow{m},\overrightarrow{n}>|$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{2}}{2}$,即可得出.

解答 (1)證明:∵AA1⊥平面ABC,∴AA1⊥AC,AA1⊥AB,
∵AA1=AC,∴四邊形ACC1A1是正方形.
∴A1C⊥AC1,
又BC1⊥A1C,又BC1∩AC1=C1,
∴A1C⊥平面ABC1
∴A1C⊥AB,
又A1C∩A1A=A1,
∴AB⊥平面A1C.
(2)解:如圖所示,建立空間直角坐標系,
①點D取A1點時,平面ABC1與平面B1C1D所成的二面角的平面角為∠CAC1=45°,
滿足cos∠CAC1=$\frac{\sqrt{2}}{2}$,∴點D可取A1點.
②點D不取A1點時,A(0,0,0),
設D(0,0,t),(t∈[0,2)),B(1,0,0),C(0,2,0),B1(1,0,2),C1(0,2,2).
$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{A{C}_{1}}$=(0,2,2),$\overrightarrow{{B}_{1}{C}_{1}}$=(-1,2,0),$\overrightarrow{D{B}_{1}}$=(1,0,2-t).
設平面ABC1的法向量為$\overrightarrow{n}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{{x}_{1}=0}\\{2{y}_{1}+2{z}_{1}=0}\end{array}\right.$,取$\overrightarrow{n}$=(0,1,-1).
設平面DB1C1的法向量為$\overrightarrow{m}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{D{B}_{1}}=0}\\{\overrightarrow{m}•\overrightarrow{{B}_{1}{C}_{1}}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{{x}_{2}+(2-t){z}_{2}=0}\\{-{x}_{2}+2{y}_{2}=0}\end{array}\right.$,取$\overrightarrow{m}$=(2,1,$\frac{2}{t-2}$).
∵平面ABC1與平面B1C1D所成的二面角的余弦值為$\frac{\sqrt{2}}{2}$,
∴$|cos<\overrightarrow{m},\overrightarrow{n}>|$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{|1-\frac{2}{t-2}|}{\sqrt{2}×\sqrt{5+(\frac{2}{t-2})^{2}}}$=$\frac{\sqrt{2}}{2}$,化為t2-3t+2=0,
解得t=1.
∴點D為線段AA1的中點.

點評 本題考查了空間位置關系、空間角、線面垂直的判定與性質定理、法向量的應用、向量垂直與數(shù)量積的關系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.2016年全國“兩會”于3月3日-3月16日在北京召開,參會代表積極參政議政,議大事謀良策,取得了一系列重要成果,某網(wǎng)站就網(wǎng)友對會議的了解情況隨機調查了1000名網(wǎng)友,結果如表:
 不很了解  了解非常了解 
50歲以上  100 212 y
 50歲以下 x188  z
若從這1000名網(wǎng)友中隨機抽取一名,抽到50名以下不很了解的概率為0.10.
(1)求x的值;
(2)若y≥193,z≥193,求“非常了解的網(wǎng)友中,50歲以下的人數(shù)不少于50歲以上的人數(shù)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列四種說法正確的是( 。
①函數(shù)f(x)的定義域是R,則“?x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件
②命題“?x∈R,($\frac{1}{3}$)x>0”的否定是“?x∈R,($\frac{1}{3}$)x≤0”
③命題“若x=2,則x2-3x+2=0”的逆否命題是“若x2-3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù).則p∧q為真命題.
A.①②③④B.①③C.①③④D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知a=$\int_0^1$(x-x2)dx,則二項式(x2-$\frac{12a}{x}$)6展開式中含x3的項的系數(shù)為(  )
A.160B.-160C.20D.-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知,AB⊥平面BCD,CD⊥CB,AD與平面BCD所成的角為30°,且AB=BC.
(1)求AD與平面ABC所成角的大。
(2)求二面角C-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知三棱錐P-ABC中,AB=5,AC=7,BC=8,PB⊥面ABC,PB=12.
(Ⅰ)求二面角P-AC-B的正切值;
(Ⅱ)求直線BP與平面PAC所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.近年來我國電子商務行業(yè)迎來篷布發(fā)展的新機遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達918億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的5次購物中,設對商品和服務全好評的次數(shù)為隨機變量X:
①求對商品和服務全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學期望和方差.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知曲線C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若曲線C1和C2相交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則b的取值范圍是(2-$\sqrt{2}$,2+$\sqrt{2}$),a的取值范圍是(-∞,ln2].

查看答案和解析>>

同步練習冊答案