已知數(shù)列的前n項(xiàng)和為構(gòu)成數(shù)列,數(shù)列的前n項(xiàng)和構(gòu)成數(shù)列.
若,則
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式.
(1);(2)
解析試題分析:(1)數(shù)列的項(xiàng)與前項(xiàng)和的關(guān)系是:,檢驗(yàn)時(shí)是否滿(mǎn)足上式,如果滿(mǎn)足合寫(xiě)成一個(gè),如果不滿(mǎn)足,分段來(lái)寫(xiě),此題已知數(shù)列的前項(xiàng)和,所以可直接求通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和時(shí),首先觀察通項(xiàng)公式的形式,選擇合適的求和方法,常見(jiàn)的求和方法有:①裂項(xiàng)相消法(把通項(xiàng)公式裂成兩項(xiàng)的差,在求和過(guò)程相互抵消);②錯(cuò)位相減法(通項(xiàng)公式是等差乘以等比的形式);③分組求和法(一般就是根據(jù)加法結(jié)合律,把求和問(wèn)題轉(zhuǎn)化為等差求和以及等比求和);④奇偶并項(xiàng)求和法(一般像這種乘以等差數(shù)列,可以分析相鄰項(xiàng)的特點(diǎn)),觀察的通項(xiàng)公式,可利用錯(cuò)位相減法和分組求和法求解.
試題解析:(1)當(dāng)時(shí), 2分
當(dāng) 4分
=
綜上所述: 6分
(2)
7分
相減得:
= 10分
所以 12分
因此 14分
考點(diǎn):1、前n項(xiàng)和與通項(xiàng)公式的關(guān)系;2、數(shù)列求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-2x+4,令Sn=f()+f()+f()+…+f()+f(1).
(1)求Sn;
(2)設(shè)bn=(a∈R)且bn<bn+1對(duì)所有正整數(shù)n恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足;
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,且的前n項(xiàng)和為,求使得對(duì)都成立的所有正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與;
(2)設(shè)數(shù)列滿(mǎn)足,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列中,,前項(xiàng)的和是,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求證:;
(Ⅲ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和,且的最大值為4.
(1)確定常數(shù)k的值,并求數(shù)列{an}的通項(xiàng)公式an;
(2)令,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,試比較Tn與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,, 且.
(1)求,的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng),且(N*),數(shù)列的前項(xiàng)和。
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),證明:當(dāng)且僅當(dāng)時(shí),。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com