13.自原點O作圓(x-1)2+y2=1的不重合的兩弦OA,OB,且|OA|•|OB|=2,若不論A,B兩點的位置怎樣,直線AB恒切與一個定圓,請求出定圓的方程.

分析 設AB邊上的高為h,則△AOB的面積S=$\frac{1}{2}$|AB|•h,再利用S=$\frac{1}{2}$|OA|•|OB|•sin∠AOB,即可得到結論.

解答 解:由題意,圓(x-1)2+y2=1是△AOB的外接圓,半徑為1,根據(jù)正弦定理:|AB|=2Rsin∠AOB=2sin∠AOB,
設AB邊上的高為h,則△AOB的面積$S=\frac{1}{2}|AB|•h=h•sin∠AOB$
∵$S=\frac{1}{2}|OA|•|OB|•sin∠AOB$=$\frac{1}{2}×2×sin∠AOB$
∴h=1為定值,
即O到AB的距離為定值1,
∴直線AB與以原點為圓心,1為半徑的圓相切,圓的方程為x2+y2=1.

點評 本題考查直線與圓的位置關系,考查圓的方程,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.原點與極點重合,x軸正半軸與極軸重合,則點(2,-2$\sqrt{3}$)的極坐標是( 。
A.(4,$\frac{π}{3}$)B.(4,$\frac{4π}{3}$)C.(-4,-$\frac{2π}{3}$)D.(4,-$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為( 。
A.$\frac{8}{3}$B.$\frac{16}{3}$C.$\frac{32}{3}$D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果x2+(y-k+1)2=2表示圓心在y軸負半軸上的圓,那么實數(shù)k的一個可能值是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知實數(shù)x,y,z滿足x+2y+z=1,則x2+4y2+z2的最小值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知角α=390°
(1)角α的終邊在第幾象限;
(2)寫出與角α終邊相同的角的集合;
(3)在-360°~720°范圍內,寫出與α終邊相同的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一個幾何體的三視圖及尺寸如圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的體積為( 。
A.$\frac{4}{3}$πB.$\frac{4\sqrt{2}}{3}$πC.D.4$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合A={x|x2-1<0},B={y|y=2x,x∈A},則A∩B=( 。
A.(0,1)B.($\frac{1}{2}$,1)C.(-1,2)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an},滿足a1=b1=1,an+1=bn+n,${b_{n+1}}={a_n}+{({-1})^{n+1}}$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求證:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2n}}}}<\frac{7}{2}$.

查看答案和解析>>

同步練習冊答案