3.已知集合A={-3,-2,-1,0,1,2,3},B={y|y=2x,x∈R},則A∩(∁RB)=( 。
A.{0,1,2,3}B.{1,2,3}C.{-3,-2,-1,0}D.{-3,-2,-1}

分析 根據(jù)補集的定義求得∁RB,再根據(jù)兩個集合的交集的定義,求得A∩(∁RB).

解答 解:∵B={y|y=2x,x∈R}=(0,+∞),∴∁RB=(-∞,0],
∵A={-3,-2,-1,0,1,2,3},
∴A∩(∁RB)={-3,-2,-1,0}
故選:C.

點評 本題考查了集合中交集與補集的運算,屬于集合運算中的基礎(chǔ)題,應(yīng)當(dāng)掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{x+3}{4}}\\{\frac{3x}{25}+\frac{y}{5}≤1}\\{x-1≥0}\end{array}\right.$,若z=mx-y-3,且z≥0恒成立,則實數(shù)m的取值不可能為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,已知PA=AB,∠ABC為直角,PA⊥BC.點D,E分別為PB,BC的中點.
(1)求證:AD⊥平面PBC;
(2)若F在線段AC上,當(dāng)$\frac{AF}{FC}$為何值時,AD∥平面PEF?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三角形ABC中,C=90°,A=30°,過C作射線l交線段AB于點D,則S△ABC>2S△ACD的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x3-12x在區(qū)間(k,k+2)上不是單調(diào)函數(shù),則實數(shù)k的取值范圍(  )
A.k≤-4或-2≤k≤0或k≥2B.-4<k<2
C.-4<k<-2或0<k<2D.不存在這樣的實數(shù)k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,C的焦點到其漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=3sin({\frac{x}{2}+\frac{π}{6}})+3$
(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期和單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;      
(2)求數(shù)列$\{\frac{1}{a_n}-n\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)S一個骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“小于4的點數(shù)出現(xiàn)”,則一次試驗中,事件A+$\overline{B}$發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊答案