已知拋物線(xiàn)的焦點(diǎn)為橢圓的右焦點(diǎn),且橢圓的長(zhǎng)軸長(zhǎng)為4,M、N是橢圓上的的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿(mǎn)足:,直線(xiàn)的斜率之積為,證明:存在定點(diǎn)使
為定值,并求出的坐標(biāo);
(3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),垂直于軸于點(diǎn),連接 并延長(zhǎng)交橢圓于點(diǎn),記直線(xiàn)的斜率分別為,證明:.

(1);(2)存在使得;(3)證明過(guò)程詳見(jiàn)試題解析.

解析試題分析:(1)由雙曲線(xiàn)的焦點(diǎn)與橢圓的焦點(diǎn)重合求出橢圓中的,再由,求出所求橢圓方程為;(2)先設(shè),由,結(jié)合橢圓的標(biāo)準(zhǔn)方程可以得到使得為定值;(3)要證明就是要考慮,詳見(jiàn)解析.
試題解析:(1)由題設(shè)可知:因?yàn)閽佄锞(xiàn)的焦點(diǎn)為,
所以橢圓中的又由橢圓的長(zhǎng)軸為4得
   
故橢圓的標(biāo)準(zhǔn)方程為: 
(2)設(shè),
可得:
   
由直線(xiàn)OM與ON的斜率之積為可得:
 ,即  
由①②可得: 
M、N是橢圓上的點(diǎn),故
,即 
由橢圓定義可知存在兩個(gè)定點(diǎn),
使得動(dòng)點(diǎn)P到兩定點(diǎn)距離和為定值;
(3)設(shè),由題設(shè)可知 ,
由題設(shè)可知斜率存在且滿(mǎn)足.
  
將③代入④可得:
點(diǎn)在橢圓,
  
  
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點(diǎn)為F,過(guò)原點(diǎn)和x軸不重合的直線(xiàn)與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線(xiàn)L與橢圓E相交于P,Q兩點(diǎn),當(dāng)PQ兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個(gè)焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點(diǎn)F2(c,0)到直線(xiàn)lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)是,又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線(xiàn)的斜率為,若直線(xiàn)與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過(guò)點(diǎn)F2且與坐標(biāo)軸不垂直的直線(xiàn)交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線(xiàn)段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)連線(xiàn)的斜率的積為定值.
(1)試求動(dòng)點(diǎn)P的軌跡方程C.
(2)設(shè)直線(xiàn)與曲線(xiàn)C交于M、N兩點(diǎn),當(dāng)|MN|=時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A,B,C是橢圓W:+y2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線(xiàn)l1:4x-3y+6=0和直線(xiàn)l2x=- (p>2).若拋物線(xiàn)Cy2=2px上的點(diǎn)到直線(xiàn)l1和直線(xiàn)l2的距離之和的最小值為2.
(1)求拋物線(xiàn)C的方程;
(2)若拋物線(xiàn)上任意一點(diǎn)M處的切線(xiàn)l與直線(xiàn)l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的焦點(diǎn)為雙曲線(xiàn)的一個(gè)焦點(diǎn),且兩條曲線(xiàn)都經(jīng)過(guò)點(diǎn).
(1)求這兩條曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線(xiàn)上,且它與雙曲線(xiàn)的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案