【題目】(本題滿(mǎn)分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且.
(Ⅰ)若為線(xiàn)段的中點(diǎn),求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點(diǎn)在線(xiàn)段上,求的最小值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ) ;(Ⅲ).
【解析】解法一:(Ⅰ)在中,因?yàn)?/span>, 為的中點(diǎn),
所以.又垂直于圓所在的平面,所以.
因?yàn)?/span>,所以平面.
(Ⅱ)因?yàn)辄c(diǎn)在圓上,
所以當(dāng)時(shí), 到的距離最大,且最大值為.
又,所以面積的最大值為.
又因?yàn)槿忮F的高,故三棱錐體積的最大值為.
(Ⅲ)在中, , ,所以.
同理,所以.
在三棱錐中,將側(cè)面繞旋轉(zhuǎn)至平面,使之與平面共面,如圖所示.
當(dāng), , 共線(xiàn)時(shí), 取得最小值.
又因?yàn)?/span>, ,所以垂直平分,
即為中點(diǎn).從而,
亦即的最小值為.
解法二:(Ⅰ)、(Ⅱ)同解法一.
(Ⅲ)在中, , ,
所以, .同理.
所以,所以.
在三棱錐中,將側(cè)面繞旋轉(zhuǎn)至平面,使之與平面共面,如圖所示.
當(dāng), , 共線(xiàn)時(shí), 取得最小值.
所以在中,由余弦定理得:
.
從而.
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家號(hào)召,某校組織部分學(xué)生參與了“垃圾分類(lèi),從我做起”的知識(shí)問(wèn)卷作答,并將學(xué)生的作答結(jié)果分為“合格”與“不合格”兩類(lèi)與“問(wèn)卷的結(jié)果”有關(guān)?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認(rèn)為“性別”與“問(wèn)卷的結(jié)果”有關(guān)?
(2)在成績(jī)合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再?gòu)倪@9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線(xiàn)段AC的中點(diǎn),E為線(xiàn)段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)與圓:相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線(xiàn)段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線(xiàn):與曲線(xiàn)只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱(chēng)為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,2,3,4四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線(xiàn)圍城的各區(qū)域上分別標(biāo)有數(shù)字1,2,3,4的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問(wèn)卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計(jì)該社區(qū)居民最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);
(2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱(chēng)為“網(wǎng)購(gòu)迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購(gòu)迷與性別有關(guān)系”;
男 | 女 | 合計(jì) | |
網(wǎng)購(gòu)迷 | 20 | ||
非網(wǎng)購(gòu)迷 | 45 | ||
合計(jì) | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購(gòu)采用的支付方式相互獨(dú)立,兩人網(wǎng)購(gòu)時(shí)間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來(lái)兩人網(wǎng)購(gòu)的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購(gòu)總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購(gòu)2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.
附:觀測(cè)值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)和同時(shí)在處取得極小值,則稱(chēng)和為一對(duì)“函數(shù)”.
(1)試判斷與是否是一對(duì)“函數(shù)”;
(2)若與是一對(duì)“函數(shù)”.
①求和的值;
②當(dāng)時(shí),若對(duì)于任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的底面邊長(zhǎng)和高都為2.現(xiàn)從該棱錐的5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.
(1)求概率的值;
(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面是矩形,與交于點(diǎn),.
(1)證明:平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com