15.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的一個焦點為F(-1,0),左、右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)當直線l的傾斜角為45°時,求線段CD的長;
(2)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

分析 (1)同橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,直線方程為y=x+1,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=x+1}\end{array}\right.$,得7x2+8x-8=0,由此利用根的判別式,韋達定理、弦長公式能求出CD的長.
(2)當直線l無斜率時,直線方程為x=-1,|S1-S2|=0,當直線l斜率存在時,設直線方程為y=k(x+1)(k≠0),聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x+1)}\end{array}\right.$,得(3+4k2)x2+8k2x+4k2-12=0,由此利用根的判別式,韋達定理、弦長公式,結合已知條件能求出|S1-S2|的最大值.

解答 解:(1)因為F(-1,0)為橢圓的焦點,所以c=1,又b2=3,
所以a2=4,所以橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,
因為直線的傾斜角為45°,所以直線的斜率為1,
所以直線方程為y=x+1,和橢圓方程聯(lián)立得到
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=x+1}\end{array}\right.$,消掉y,得到7x2+8x-8=0,
所以△=288,x1+x2=-$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
所以線段CD的長|CD|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{2}$×$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{24}{7}$.
(2)當直線l無斜率時,直線方程為x=-1,
此時D(-1,$\frac{3}{2}$),C(-1,-$\frac{3}{2}$),△ABD,△ABC面積相等,|S1-S2|=0,
當直線l斜率存在(由題意知k≠0)時,設直線方程為y=k(x+1)(k≠0),
設C(x1,y1),D(x2,y2),
和橢圓方程聯(lián)立得到$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x+1)}\end{array}\right.$,消掉y得(3+4k2)x2+8k2x+4k2-12=0,
△>0,方程有根,且x1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
此時|S1-S2|=2||y1|-|y2||=2|y1+y2|=2|k(x2+1)+k(x1+1)|
=2|k(x2+x1)+2k|=$\frac{12|k|}{3+4{k}^{2}}$=$\frac{12}{\frac{3}{|k|}+4|k|}$≤$\frac{12}{2\sqrt{\frac{3}{|k|}+4|k|}}$=$\frac{12}{2\sqrt{12}}$=$\sqrt{3}$(k=±$\frac{\sqrt{3}}{2}$時等號成立)
所以|S1-S2|的最大值為$\sqrt{3}$.

點評 本題考查線段長的求法,考查兩三角形面積差的絕對值的最大值的求法,是中檔題,解題時要認真審題,注意根的判別式,韋達定理、弦長公式、橢圓性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.在直角坐標系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)若直線C1與O圓相交于A,B,求弦長|AB|;
(2)以該直角坐標系的原點O為極點,x軸的非負半軸為極軸建立極坐標系,圓C2的極坐標方程為$ρ=2cosθ+2\sqrt{3}sinθ$,圓O和圓C2的交點為P,Q,求弦PQ所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若i為復數(shù)單位,復數(shù)z=$\frac{1-ai}{i}$在復平面內(nèi)對應的點在直線x+2y+5=0上,則實數(shù)a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知平面區(qū)域$Ω:\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}\right.$,夾在兩條斜率為$-\frac{3}{4}$的平行直線之間,且這兩條平行直線間的最短距離為m.若點P(x,y)∈Ω,則z=mx-y的最小值為( 。
A.$\frac{9}{5}$B.3C.$\frac{24}{5}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項和為Sn,且2n+1,Sn,a成等差數(shù)列(n∈N*).
(1)求a的值及數(shù)列{an}的通項公式;
(2)若bn=(1-an)log2(anan+1),求數(shù)列{$\frac{1}{_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,空間四邊形OACB中,$\overrightarrow{{O}{A}}$=$\overrightarrow{a}$,$\overrightarrow{{O}{B}}$=$\overrightarrow$,$\overrightarrow{{O}C}$=$\overrightarrow{c}$,點M在OA上,且$\overrightarrow{OM}=\frac{2}{3}\overrightarrow{OA}$,點N為BC中點,則$\overrightarrow{MN}$等于$-\frac{2}{3}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow+\frac{1}{2}\overrightarrow{c}$.(用向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設D,E,F(xiàn)分別△ABC的三邊AB,BC,CA的中點,則$\overrightarrow{EA}+\overrightarrow{DC}$=( 。
A.$\overrightarrow{BC}$B.$3\overrightarrow{DF}$C.$\overrightarrow{BF}$D.$\frac{3}{2}\overrightarrow{BF}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.我國古代數(shù)學著作《九章算術》中有如下問題:“今有蒲生一日,長三尺,莞生一日,長一尺.蒲生日自半.莞生日自倍.問幾何日而長等?”意思是“今有蒲草第一天長高3尺,菀草第一天長高1尺.以后蒲草每天長高前一天的一半,而菀草每天長高前一天的2倍,問多少天蒲草和菀草高度相同?”根據(jù)上述已知條件,可求得第2.6天,蒲草和菀草高度相同.(已知lg2=0.3010,lg3=0.4771,結果精確到0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用前衛(wèi)組織設定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米與75微克/立方米之間的空氣質量為二級;在75微克/立方米以上的空氣質量為超標.為了解甲,乙兩座城市2016年的空氣質量情況,從全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取20天的數(shù)據(jù)作為樣本,監(jiān)測值如以下莖葉圖所示(十位為莖,個位為葉).
(Ⅰ)從甲,乙兩城市共采集的40個數(shù)據(jù)樣本中,從PM2.5日均值在[60,80]范圍內(nèi)隨機取2天數(shù)據(jù),求取到2天的PM2.5均超標的概率;
(Ⅱ)以這20天的PM2.5日均值數(shù)據(jù)來估計一年的空氣質量情況,則甲,乙兩城市一年(按365天計算)中分別約有多少天空氣質量達到一級或二級.

查看答案和解析>>

同步練習冊答案