【題目】已知動圓過定點,且和直線相切,動圓圓心形成的軌跡是曲線,過點的直線與曲線交于兩個不同的點.

(1)求曲線的方程;

(2)在曲線上是否存在定點,使得以為直徑的圓恒過點?若存在,求出點坐標;若不存在,說明理由.

【答案】(1)(2)見解析

【解析】

(1)由拋物線定義確定P的軌跡方程,(2)設,直線的方程為,代入拋物線方程,整理得

設存在定點,由,代入韋達定理整理得,利用即可得

(1)設動圓圓心到直線的距離為,根據(jù)題意,

動點形成的軌跡是以為焦點,以直線為準線的拋物線,

拋物線方程為.

(2)根據(jù)題意,設,直線的方程為,代入拋物線方程,整理得

若設拋物線上存在定點,使得以為直徑的圓恒過點,設,則

,同理可得

解得

在曲線上存在定點,使得以為直徑的圓恒過點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在菱形 中,.

(1)若的中點,則 ______

(2)點在線段上運動,則||的最小值為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標號分別為,3個紅球標號分別為,,,現(xiàn)從箱子中隨機地一次取出兩個球.

(1)求取出的兩個球都是白球的概率;

(2)求取出的兩個球至少有一個是白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若處取得極值,,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若時函數(shù)有兩個不同的零點、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間上任取一個數(shù)記為a,在區(qū)間上任取一個數(shù)記為b

a,求直線的斜率為的概率;

a,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面是菱形,.

(1)求證:;

(2)若的中點,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,橫坐標不小于的動點在軸上的射影為,若.

(1)求動點的軌跡的方程;

(2)若點不在直線上,并且直線與曲線相交于兩個不同點.問是否存在常數(shù)使得當的值變化時,直線斜率之和是一個定值.若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面ABCD,四邊形AEFB為矩形,,,

1)求證:平面ADE

2)求平面CDF與平面AEFB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,為坐標原點,為橢圓上任意一點,分別為橢圓的左、右焦點,且,,依次成等比數(shù)列,其離心率為.過點的動直線與橢圓相交于、兩點.

1)求橢圓的標準方程;

2)當時,求直線的方程;

3)在平面直角坐標系中,若存在與點不同的點,使得成立,求點的坐標.

查看答案和解析>>

同步練習冊答案