17.已知三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AC=2,且該三棱錐所有頂點都在球O的球面上,則球O的表面積為( 。
A.B.C.16πD.20π

分析 由題意,將三棱錐擴充為長方體,長方體的對角線PC為外接球的直徑,PC=2$\sqrt{2}$,由此可求球O的表面積.

解答 解:由題意,將三棱錐擴充為長方體,長方體的對角線PC為外接球的直徑,PC=2$\sqrt{2}$,
半徑為$\sqrt{2}$,∴球O的表面積為4π•2=8π,
故選B.

點評 本題考查球O的表面積,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.5位同學站成一排照相,其中甲與乙必須相鄰,且甲不能站在兩端的排法總數(shù)是(  )
A.40B.36C.32D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線y=-x+1與橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點,且線段AB的中點在直線l:x-2y=0上,橢圓G的右焦點關于直線l的對稱點的在圓x2+y2=4上.
(Ⅰ)求橢圓G的標準方程;
(Ⅱ)已知點C,D分別為橢圓G的右頂點與上頂點,設P為第三象限內(nèi)一點且在橢圓G上,直線PC與y軸交于點M,直線PD與x軸交于點N,求證:四邊形CDNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在等比數(shù)列{an}中,$2{a_1},\frac{3}{2}{a_2},{a_3}$成等差數(shù)列,則等比數(shù)列{an}的公比為1或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設定義在 R 上的函數(shù)y=f(x),對于任一給定的正數(shù)p,定義函數(shù)fp(x)=$\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,則稱函數(shù) f p (x) 為 f (x) 的“p 界函數(shù)”.關于函數(shù)f(x)=x2-2x-1的 2 界函數(shù),結論不成立的是(  )
A.f2(f(0))=f(f2(0))??B.f2(f(1))=f(f2(1))??C.f2(f(2))=f(f2(2))??D.f2(f(3))=f(f2(3))??

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)$y=\frac{{{x^2}ln{x^2}}}{|x|}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對于任意正整數(shù)n均成立,則數(shù)列{xn}的前2016項和S2016的值為( 。
A.672B.673C.1342D.1344

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=loga(x-3)+2(a>0且a≠1)過定點P,且角α的終邊過點P,則sin2α+cos2α的值為( 。
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知點P在直線x+y-6=0上移動,過點P作圓(x-2)2+(y-2)2=1的切線,相切于點Q,則切線長|PQ|的最小值為( 。
A.$\sqrt{2}-1$B.1C.$\sqrt{2}$D.$\sqrt{15}$

查看答案和解析>>

同步練習冊答案