A. | f2(f(0))=f(f2(0))?? | B. | f2(f(1))=f(f2(1))?? | C. | f2(f(2))=f(f2(2))?? | D. | f2(f(3))=f(f2(3))?? |
分析 由于函數(shù)f(x)=x2-2x-1,p=2,求出f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x<-1或x>3}\end{array}\right.$,再對選項一一加以判斷,即可得到答案.
解答 解:∵函數(shù)f(x)=x2-2x-1,p=2,
∴f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x<-1或x>3}\end{array}\right.$,
∴A.f2[f(0)]=f2(-1)=2,f[f2(0)]=f(-1)=1+2-1=2,故A成立;
B.f2[f(1)]=f2(-2)=2,f[f2(1)]=f(-2)=4+4-1=7,故B不成立;
C.f2[f(2)]=f2(-1)=2,f[f2(2)]=f2(-1)=2,故C成立;
D.f2[f(3)]=f2(2)=-1,f[f2(3)]=f2(2)=-1,故D成立.
故選:B.
點評 本題考查新定義的理解和運用,考查分段函數(shù)的運用:求函數(shù)值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 16π | D. | 20π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{7}+\sqrt{3}}{2}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=f(x)的最小正周期為π | |
B. | 函數(shù)y=f(x)的一個對稱中心為$(\frac{7π}{12},\frac{1}{2})$ | |
C. | 函數(shù)y=f(x)在區(qū)間$[0,\frac{π}{2}]$上單調(diào)遞增 | |
D. | 將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位后,所得圖象對應(yīng)的函數(shù)為偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com